338 research outputs found

    Biallelic mutations in valyl-tRNA synthetase gene VARS are associated with a progressive neurodevelopmental epileptic encephalopathy.

    Get PDF
    Aminoacyl-tRNA synthetases (ARSs) function to transfer amino acids to cognate tRNA molecules, which are required for protein translation. To date, biallelic mutations in 31 ARS genes are known to cause recessive, early-onset severe multi-organ diseases. VARS encodes the only known valine cytoplasmic-localized aminoacyl-tRNA synthetase. Here, we report seven patients from five unrelated families with five different biallelic missense variants in VARS. Subjects present with a range of global developmental delay, epileptic encephalopathy and primary or progressive microcephaly. Longitudinal assessment demonstrates progressive cortical atrophy and white matter volume loss. Variants map to the VARS tRNA binding domain and adjacent to the anticodon domain, and disrupt highly conserved residues. Patient primary cells show intact VARS protein but reduced enzymatic activity, suggesting partial loss of function. The implication of VARS in pediatric neurodegeneration broadens the spectrum of human diseases due to mutations in tRNA synthetase genes

    Application of calcifying bacteria for remediation of stones and cultural heritages

    Get PDF
    Since ages, architects and artists worldwide have focused on usage of durable stones as marble and limestone for construction of beautiful and magnificent historic monuments as European Cathedrals, Roman, and Greek temples, Taj Mahal etc. But survival of these irreplaceable cultural and historical assets is in question these days due to their degradation and deterioration caused by number of biotic and abiotic factors. These causative agents have affected not only the esthetic appearance of these structures, but also lead to deterioration of their strength and durability. The present review emphasizes about different causative agents leading to deterioration and application of microbially induced calcium carbonate precipitation as a novel and potential technology for dealing with these problems. The study also sheds light on benefits of microbial carbonate binders over the traditional agents and future directions

    First Molecular Epidemiological Study of Cutaneous Leishmaniasis in Libya

    Get PDF
    Cutaneous leishmaniasis (CL) is caused by protozoan parasites of the genus Leishmania. The disease is characterized by the formation of chronic skin lesions followed by permanent scars and deformation of the infected area. It is distributed in many tropical and subtropical countries with more than 2 million cases every year. During the past few years CL has emerged as a major public health problem in Libya. So far, diagnosis was based on clinical symptoms and microscopic observation of parasites. Disease outbreaks were not investigated and the causative leishmanial species of CL were not identified so far. Our study indicates the presence of two coexisting species: Leishmania major and Leishmania tropica. These results are crucial in order to provide accurate treatment, precise prognosis and appropriate public health control measures. The recent armed conflict in Libya that ended with the Gadhafi regime collapse on October 2011 has affected all aspects of the life in the country. In this study we discussed multiple risk factors that could be associated with this conflict and present major challenges that should be considered by local and national health authorities for evaluating the CL burden and highlighting priority actions for disease control

    Dark sectors 2016 Workshop: community report

    Get PDF
    This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years

    Hereditary breast cancer in Middle Eastern and North African (MENA) populations: identification of novel, recurrent and founder BRCA1 mutations in the Tunisian population

    Get PDF
    Germ-line mutations in BRCA1 breast cancer susceptibility gene account for a large proportion of hereditary breast cancer families and show considerable ethnic and geographical variations. The contribution of BRCA1 mutations to hereditary breast cancer has not yet been thoroughly investigated in Middle Eastern and North African populations. In this study, 16 Tunisian high-risk breast cancer families were screened for germline mutations in the entire BRCA1 coding region and exon–intron boundaries using direct sequencing. Six families were found to carry BRCA1 mutations with a prevalence of 37.5%. Four different deleterious mutations were detected. Three truncating mutations were previously described: c.798_799delTT (916 delTT), c.3331_3334delCAAG (3450 delCAAG), c.5266dupC (5382 insC) and one splice site mutation which seems to be specific to the Tunisian population: c.212 + 2insG (IVS5 + 2insG). We also identified 15 variants of unknown clinical significance. The c.798_799delTT mutation occurred at an 18% frequency and was shared by three apparently unrelated families. Analyzing five microsatellite markers in and flanking the BRCA1 locus showed a common haplotype associated with this mutation. This suggests that the c.798_799delTT mutation is a Tunisian founder mutation. Our findings indicate that the Tunisian population has a spectrum of prevalent BRCA1 mutations, some of which appear as recurrent and founding mutations

    The Regulation of Photosynthetic Structure and Function during Nitrogen Deprivation in Chlamydomonas reinhardtii

    Get PDF
    The accumulation of carbon storage compounds by many unicellular algae after nutrient deprivation occurs despite declines in their photosynthetic apparatus. To understand the regulation and roles of photosynthesis during this potentially bioenergetically valuable process, we analyzed photosynthetic structure and function after nitrogen deprivation in the model alga Chlamydomonas reinhardtii. Transcriptomic, proteomic, metabolite, and lipid profiling and microscopic time course data were combined with multiple measures of photosynthetic function. Levels of transcripts and proteins of photosystems I and II and most antenna genes fell with differing trajectories; thylakoid membrane lipid levels decreased, while their proportions remained similar and thylakoid membrane organization appeared to be preserved. Cellular chlorophyll (Chl) content decreased more than 2-fold within 24 h, and we conclude from transcript protein and 13C labeling rates that Chl synthesis was down-regulated both pre- and posttranslationally and that Chl levels fell because of a rapid cessation in synthesis and dilution by cellular growth rather than because of degradation. Photosynthetically driven oxygen production and the efficiency of photosystem II as well as P700+ reduction and electrochromic shift kinetics all decreased over the time course, without evidence of substantial energy overflow. The results also indicate that linear electron flow fell approximately 15% more than cyclic flow over the first 24 h. Comparing Calvin-Benson cycle transcript and enzyme levels with changes in photosynthetic 13CO2 incorporation rates also pointed to a coordinated multilevel down-regulation of photosynthetic fluxes during starch synthesis before the induction of high triacylglycerol accumulation rates

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Role of host genetics in fibrosis

    Get PDF
    Fibrosis can occur in tissues in response to a variety of stimuli. Following tissue injury, cells undergo transformation or activation from a quiescent to an activated state resulting in tissue remodelling. The fibrogenic process creates a tissue environment that allows inflammatory and matrix-producing cells to invade and proliferate. While this process is important for normal wound healing, chronicity can lead to impaired tissue structure and function
    corecore