48 research outputs found

    Photocatalytic Hydrogen Generation from a Visible-Light-Responsive Metal–Organic Framework System: Stability versus Activity of Molybdenum Sulfide Cocatalysts

    Get PDF
    We report the use of two earth abundant molybdenum sulfide-based cocatalysts, Mo(3)S(13)(2-)clusters and 1T-MoS2 nanoparticles (NPs), in combination with the visible-light active metal-organic framework (MOF) MIL-125-NH2 for the photocatalytic generation of hydrogen (H-2) from water splitting. Upon irradiation (lambda >= 420 nm), the best-performing mixtures of Mo3S132-/MIL-125-NH2 and 1T-MoS2/MIL-125-NH2 exhibit high catalytic activity, producing H-2 with evolution rates of 2094 and 1454 mu mol h(-1) g(MOF)(-1) and apparent quantum yields of 11.0 and 5.8% at 450 nm, respectively, which are among the highest values reported to date for visible-light-driven photocatalysis with MOFs. The high performance of Mo3S132- can be attributed to the good contact between these clusters and the MOF and the large number of catalytically active sites, while the high activity of 1T-MoS2 NPs is due to their high electrical conductivity leading to fast electron transfer processes. Recycling experiments revealed that although the Mo3S132-/MIL-125-NH2 slowly loses its activity, the 1T-MoS2/MIL-125-NH2 retains its activity for at least 72 h. This work indicates that earth-abundant compounds can be stable and highly catalytically active for photocatalytic water splitting, and should be considered as promising cocatalysts with new MOFs besides the traditional noble metal NPs

    Potential of pineapple waste extract (PWE) as co-substrate in anaerobic digestion of rice straw washwater (RSWW): enhancement of biogas production

    Get PDF
    This study aims to investigate the potential methane yield by mono-anaerobic digestion of rice straw washwater (RSWW) and pineapple waste extract (PWE) as well as the co-digestion of both RSWW and PWE at a ratio of 50:50 (v/v). The experiment was conducted at a controlled mesophilic temperature of 37 °C in Upflow Anaerobic Sludge Blanket (UASB) reactor for a period of approximately 55 days. The process performances were evaluated based on the efficiency of COD removal and methane production in relation to other parameters such as pH, organic loading rate (OLR) and alkalinity ratio. This study confirmed that the rate of COD removal for RSWW, PWE, and RSWW:PWE (50:50) were achieved the stable condition at 81, 89, and 86% respectively. The alkalinity ratio value and pH throughout the experimental period remained below 0.30 and kept in the range of 6.5–7.0 indicated the stable and good environment existed for anaerobic digestion within the UASB reactor. This study implies that the co-digestion of RSWW:PWE found to improve the efficiency of COD removal and production of methane during the mono-digestion of RSWW from 81 to 86% and 0.093 to 0.13 LCH4/g CODrem by the increment of 6.2 and 40%, respectively

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Discovery of a self-healing catalyst for the hydrolytic dehydrogenation of ammonia borane

    No full text
    Sustainable catalysts based on earth-abundant elements are considered as economical alternatives to precious-metal-bearing catalysts and could be impactful for many applications. Self-healing sustainable catalysts, which in addition to their 'green' characteristic can spontaneously repair themselves without the need of applying heat, pressure or electrochemical bias, are particularly desirable for numerous large-scale chemical processes. Herein, we present the discovery of such a catalyst, named SION-X, for the hydrolytic dehydrogenation of ammonia borane (AB, NH3BH3). SION-X, with the chemical formula of CuII2[(BO)(OH)(2)](OH)(3), is the synthetic form of the mineral Jacquesdietrichite and, following in situ reduction, catalyzes the release of almost all 3 equivalents of hydrogen (H-2) from 1 equivalent of AB. During the reaction, the Cu-II ions in SION-X are reduced to Cu-0 nanoparticles, and after the reaction, following exposure to air, they are oxidized re-forming SION-X. As a consequence, the catalytic activity of SION-X toward the production of H-2 from AB remains unchanged over many cycles. The self-healing catalysis of SION-X in the absence of any extra energy input gives a new perspective in heterogeneous catalysis for energy-related applications

    Photocatalytic Hydrogen Generation from a Visible-Light-Responsive MetalOrganic Framework System: Stability versus Activity of Molybdenum Sulfide Cocatalysts

    No full text
    We report the use of two earth abundant molybdenum sulfide-based cocatalysts, Mo3S132– clusters and 1T-MoS2 nanoparticles (NPs), in combination with the visible-light active metal–organic framework (MOF) MIL-125-NH2 for the photocatalytic generation of hydrogen (H2) from water splitting. Upon irradiation (λ ≥ 420 nm), the best-performing mixtures of Mo3S132–/MIL-125-NH2 and 1T-MoS2/MIL-125-NH2 exhibit high catalytic activity, producing H2 with evolution rates of 2094 and 1454 μmol h–1 gMOF–1 and apparent quantum yields of 11.0 and 5.8% at 450 nm, respectively, which are among the highest values reported to date for visible-light-driven photocatalysis with MOFs. The high performance of Mo3S132– can be attributed to the good contact between these clusters and the MOF and the large number of catalytically active sites, while the high activity of 1T-MoS2 NPs is due to their high electrical conductivity leading to fast electron transfer processes. Recycling experiments revealed that although the Mo3S132–/MIL-125-NH2 slowly loses its activity, the 1T-MoS2/MIL-125-NH2 retains its activity for at least 72 h. This work indicates that earth-abundant compounds can be stable and highly catalytically active for photocatalytic water splitting, and should be considered as promising cocatalysts with new MOFs besides the traditional noble metal NPs
    corecore