Photocatalytic Hydrogen Generation from a Visible-Light Responsive Metal-Organic Framework System: The Impact of Nickel Phosphide Nanoparticles

Stavroula Kampouri,^a Tu N. Nguyen,^a Christopher P. Ireland,^a Bardiya Valizadeh,^a Fatmah Mish Ebrahim,^a Gloria Capano,^a Daniele Ongari,^a Amber Mace,^{ab} Nestor Guijarro Carratala,^c Kevin Sivula,^c Andrzej Sienkiewicz,^d László Forró,^d Berend Smit,^a Kyriakos C. Stylianou^a*

- ^{a.} Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL Valais), Rue de l'industrie 17, 1951 Sion (Switzerland). E-mail: Kyriakos.stylianou@epfl.ch
- ^{b.} Department of Materials and Environmental Chemistry, Arrhenius Laboratory Stockholm University.
- ^{c.} Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne (Switzerland).
- d. Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, 1015 Lausanne (Switzerland).
- \dagger Electronic Supplementary Information (ESI) available: Experimental methods, Synthetic procedures, characterization and computational details. This material is available free of charge via the internet at See DOI: 10.1039/x0xx00000x

Abstract: Herein, we report the performance of a photocatalytic system based on the visible-light active MIL-125-NH₂ mixed with nickel phosphide (Ni₂P) nanoparticles. This combination boosts the H₂ evolution rate to an outstanding value of 894 μ mol h⁻¹ g⁻¹ under visible-light irradiation, which is among the highest H₂ evolution rates reported to date for metal-organic frameworks (MOFs). The H₂ generation rate produced by Ni₂P/MIL-125-NH₂ is almost 3 times higher than that of Pt/MIL-125-NH₂ system, highlighting the impact of the co-catalyst in photocatalytic water splitting. Additionally, our system outperforms the Ni₂P/TiO₂ system under UV-Vis irradiation. The exceptional performance of Ni₂P/MIL-125-NH₂ is due to the efficient transfer of photogenerated electrons from MIL-125-NH₂ to Ni₂P, high intrinsic activity of Ni₂P and exceptional synergy between them. This system exhibits the highest apparent quantum yields of 27.0 and 6.6 % at 400 and 450 nm, respectively, ever reported for MOFs.

Hydrogen (H₂) gas is widely produced and used in industries, particularly in fossil fuel processing and ammonia synthesis. In addition, it is considered as a clean energy carrier for a sustainable energy future, since the combustion of H₂ results in the generation of water and no greenhouse gasses, which eliminates the risk of climate change and allows for a carbon-neutral energy cycle.² Traditional methods for H₂ production include methane steam reforming and coal gasification; however, these processes also produce carbon dioxide as a by-product that needs to be captured and sequestered.³ H₂ can also be generated from water electrolysis using electricity but the electricity must also be obtained from a renewable energy source such as solar, wind, hydroelectric, or hydrothermal energy. A superior method to generate H₂ is through artificial photosynthesis, which utilizes the inexhaustible solar energy to directly convert water into H₂.⁴ Owing to the sustainable nature of this procedure and the potential cost efficiency, many research efforts in materials science have been focused on developing novel photocatalytic systems that can enhance the rate of H₂ evolution, with 10% quantum efficiencies being the lower limit for commercial applications to be feasible.^{5,6} However, due to the negligible absorptivity of traditional photocatalysts such as TiO2 and SnO2 toward the visible-light, the low water stability of other alternatives such as CdS or GaAs, and the high cost of noble metal co-catalysts, no photocatalytic systems have been industrially applied.^{7,8}

A metal-organic framework (MOF) is a network of metal ions or clusters bridged by organic ligands through coordination bonds into a porous extended structure. 9-11 MOFs offer the exciting possibility to integrate a light harvesting moiety (ligand), a catalytic component (reductive metal ions), and intrinsic porosity into a single structure. 12,13 Therefore, the utilization of MOFs can be a pioneering key for the field of photocatalytic H₂ generation. 4 MOF-based photocatalytic system can consist of several components in addition to the MOF, which is the main component and usually acts as an antenna harvesting light. Upon illumination, the MOF generates charge-carriers (electrons and holes) with the electrons being responsible to reduce H₂O into H₂. In addition to the MOF photocatalyst, the photocatalytic system (for H₂ generation) usually comprises: *i*. a co-catalyst that can attract the photogenerated electrons; *ii*. a photosensitizer that may be used to extend the light absorption into the visible region, when a UV-light-active (MOF) photocatalyst is used; is used; iii. a sacrificial agent that is usually employed as an electron donor to scavenge the photogenerated holes; and *iv*. a redox shuttle which can expedite the charge transfer between the photocatalyst and the co-catalyst. 18

Several MOF-based photocatalytic systems have been tested for visible-light driven H₂ production; most of them are based on reductive metal ions such as Ti^{IV} and Zr^{IV} and visible-light-active ligands that can harvest solar light and convert it into H₂ (Tables 1 and S2).¹⁷⁻²⁹ Recently, Cu^I or Cu^{II}-based MOFs were found to be good candidates to photocatalytically reduce H₂O into for H₂ under UV/vis or visible irradiation (Table S2).³⁰⁻³² Despite the high promise of MOFs towards water splitting, the majority of these MOF-based systems demonstrate very low apparent quantum yields or still utilize expensive noble-metal co-catalysts such as Pt nanoparticles (NPs).^{18,20} The latter is due to the easy preparation and intrinsic activity of Pt NPs, yet their use does not guarantee the best photocatalytic performance. Although very few examples have been reported in the literature, the synergy between MOFs and co-catalysts is proven to be a key factor for the photocatalytic performance of the system, as different hydrogen generation rates and quantum yields are observed when the same MOF is used (Tables 1). Consequently, there is a need to investigate the activity of alternative co-catalysts and identify photocatalytic systems and conditions optimum for water splitting and hydrogen generation.

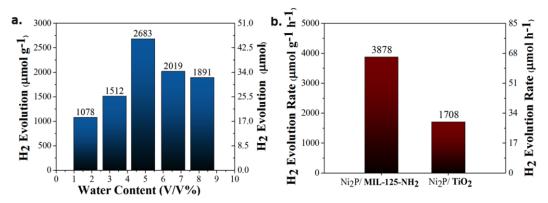
Table 1: Comparison of the visible-light driven photocatalytic performance of systems utilizing MIL-125-NH $_2$ as the photocatalyst with different co-catalysts.

Co-catalyst	Light Source λ (nm)	HER_P $(\mu mo$ $1 h^{-1}$ $g^{-1})$	Apparent Quantum Yield (%)	Stability (h)	Ref.
Pt NPs	≥ 420	*333	-	> 9	15
Pt NPs	\geq 420	*525	-	> 9	16
Co ^{II} complex	≥ 380	553	-	> 7.5	17
$\mathrm{Co^{III}}$	≥ 408	*637	0.5	> 70	18
oxime					
Ni ₂ P NPs	≥ 420	894	6.6-450nm 27.0-400nm	> 84	This work

HERP: H₂ evolution rate with respect to the photocatalyst

Herein, we report a photocatalytic system consisting of the visible-light absorbing MIL-125-NH₂ as the photocatalyst and the Ni₂P nanoparticles (NPs) as the co-catalyst. Although both materials have been tested with other photocatalysts or co-catalysts,^{23,33} our Ni₂P/MIL-125-NH₂ system exhibits H₂ evolution rates and apparent quantum yields (AQY) under visible-light

^{*} Calculated based on reported data


irradiation, that are among the highest values reported to date for MOFs. The H₂ generation rate produced by Ni₂P/MIL-125-NH₂ is almost 3 times higher than the Pt/MIL-125-NH₂ system tested under the same reaction conditions, suggesting that the selection of the co-catalyst is crucial for the design of efficient photocatalytic systems. In addition, Ni₂P/MIL-125-NH₂ outperforms Ni₂P/TiO₂, with TiO₂ being the most well studied photocatalyst for water splitting,³⁴ highlighting the exceptional synergy between MIL-125-NH₂ and Ni₂P.

MIL-125-NH₂ and Ni₂P NPs were synthesized and characterized according to reported procedures (Sections S1-S7).^{23,35} The size of the NPs is around 16-19 nm as shown by Transmission Electron Microscopy (TEM) images, and the N₂ isotherm collected at 77 K revealed a BET surface area of 27.8 m²/g (Fig. S2-S5). In order to assess the performance and optimize the composition of our photocatalytic system toward H₂ generation, different combinations of MIL-125-NH₂ and Ni₂P powders were mixed in a reactor containing a solvent mixture of acetonitrile (CH₃CN), triethylamine (TEA) as the sacrificial agent, and water. The reactor was then irradiated with visible light by a 300 W Xe lamp using a longpass cut-off filter allowing $\lambda \ge 420$ nm, and the generated H₂ was analysed by gas chromatography. As shown in Fig. S7 and S8, when increasing amounts of Ni₂P were added to a constant amount of MIL-125-NH₂, the H₂ evolution rate increases since the co-catalyst attracts the electrons efficiently, inhibiting the undesired charge carrier recombination. By reaching 9.2 (\pm 0.4) wt% of Ni₂P, the H₂ evolution rate is maximized. At this ratio, there is an optimum level of interactions between Ni₂P and MIL-125-NH₂, promoting the electron transfer to the Ni₂P. Further increasing the amount of Ni₂P leads to a decrease in the H₂ production rate, as the interaction between MIL-125-NH₂ and the Ni₂P is already at its maximum, while the Ni₂P NPs simultaneously compete with MIL-125-NH₂ in light absorption, shielding-effect.³⁶ As displayed in Fig. S9, the Ni₂P/MIL-125-NH₂ system exhibits a highly enhanced activity that is almost 300 times higher than that of the pristine MIL-125-NH₂ (2.249 µmol h⁻¹ g⁻¹), reaching a H₂ evolution rate of 648 µmol h⁻¹g⁻¹ and 7865 µmol h⁻¹g⁻¹ with respect to MIL-125-NH₂ and Ni₂P. Blank photocatalytic experiments (under visible-light irradiation) using solely Ni₂P with and without the NH₂-H₂BDC (amino-terephthalic acid) ligand resulted in no H₂ generation, confirming the unique advantage of having MIL-125-NH₂ as a photocatalyst within the system. Moreover, recycling experiments for the optimum ratio between Ni₂P and MIL-125-NH₂ revealed that the H₂ evolution rate of this system remains stable for at least seven catalytic runs (each for 12 h, Fig. S10). The PXRD patterns of the samples before and after photocatalysis are comparable, confirming that the crystallinity of both MIL-125-NH₂ and Ni₂P is retained after 84 h of continuous irradiation (Fig. S10).

We further examined the performance of Ni_2P/MIL -125- NH_2 by varying the solvent mixtures; we kept the same ratio of acetonitrile and TEA, whereas the H_2O content was varied from 1.63 v/v% to 8.19 v/v% (V_{total} was kept constant) (Fig. 1a and S11). By increasing the water content, the H_2 evolution rate also increases. With the optimum photocatalytic solution of 4.87 v/v% water, the photocatalytic system reached a H_2 evolution rate of 894 μ mol h^{-1} g⁻¹ and 10134 μ mol h^{-1} g⁻¹ with respect to the MIL-125- NH_2 and Ni_2P . To the best of our knowledge, this is among the highest H_2 evolution rate for a visible-light active photocatalytic-MOF system reported to date (Table 1). 19,20,23 . The AQYs of the optimum system at 400 and 450 nm were calculated by Ferrioxalate actinometry 37,38 and reached values of 27.0 and 6.6 %, respectively (Section S9). These are the highest reported efficiencies for MOFs 18,23,39 (Tables 1 and S2) and comparable to leading photocatalysts. 40,41

In order to compare our photocatalytic MOF system with TiO_2 , we investigated the parallel photocatalytic performance of $Ni_2P/MIL-125-NH_2$ and Ni_2P/TiO_2 toward H_2 generation, under irradiations that include UV light since TiO_2 is characterized by an overly large optical band gap (~3 eV) and operates only under UV irradiation. Commercial TiO_2 (P25, Degausa - which is a standard material in the field of TiO_2 -photocatalyzed reactions) was used⁴² and the amount of Ni_2P added was

first varied in order to determine the optimum system. In order to compare our photocatalytic MOF system with TiO_2 , we investigated the parallel photocatalytic performance of $Ni_2P/MIL-125-NH_2$ and Ni_2P/TiO_2 toward H_2 generation, under irradiations that include UV light since TiO_2 is characterized by an overly large optical band gap (~3 eV) and operates only under UV irradiation. The optimum Ni_2P/TiO_2 system contains $15.3 (\pm 0.4)$ wt% of Ni_2P (Section S10). The best performing $Ni_2P/MIL-125-NH_2$ and Ni_2P/TiO_2 systems generated H_2 with a rate of 3878 and 1708 μ mols g^{-1} h^{-1} , with respect to the MIL-125-NH₂ and TiO_2 , and the AQY for Ni_2P/TiO_2 at 400 nm was found to be 0.9 % (Fig. 1b and Section S9). It is apparent that by a simple subtraction of the visible-light-driven H_2 evolution rate previously obtained (894 μ mol h^{-1} g^{-1}), $Ni_2P/MIL-125-NH_2$ outperforms Ni_2P/TiO_2 even in the UV light region. This can be attributed to the high porosity of MIL-125-NH₂ (BET: 1197.5 m²/g) that allows for easy light penetration compared to the solid TiO_2 , the high molar absorptivity of MIL-125-NH₂, and particularly the exceptional synergy between MIL-125-NH₂ and Ni_2P .

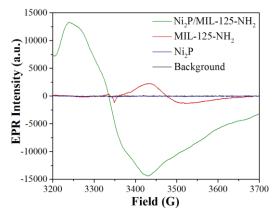


Fig. 1 (a) H_2 evolution of the optimum $Ni_2P/MIL-125-NH_2$ system with different water contents under visible-light irradiation for 3 hours and (b) Maximum H_2 evolution rates of 9.2 (± 0.4) wt% $Ni_2P/MIL-125-NH_2$ and 15.3 (± 0.4) wt% Ni_2P/TiO_2 with respect to the photocatalyst under UV/vis light irradiation for 3 hours.

As indicated in previous studies, the NH₂-BDC within MIL-125-NH₂ acts as an antenna that absorbs light and promotes an electron from the Highest Occupied Crystalline Orbitals (HOCOs) to the Lowest Unoccupied Crystalline Orbitals (LUCOs) of MIL-125-NH₂. The HOCOs comprise mainly the π orbitals of the ligand while the LUCOs have contributions from the O 2p and the Ti 3d orbitals. ^{43,44} As proposed by Santaclara *et al.*, upon illumination, electron-hole pairs are generated, with the holes mainly localized and restricted in movement in the -NH₂ groups of the ligand, whereas the electrons are relatively free to migrate to the Ti 3d orbitals (confirmed by the presence of Ti³⁺ in the electron paramagnetic resonance (EPR) spectrum of MIL-125-NH₂ shown in Fig. 2), thus allowing effective charge separation. ^{42,45} Such charge separation provides an efficient stabilization of the photoexcited species; a key element for allowing the electrons to reach the surface of MIL-125-NH₂, before their recombination with the holes.

In order to further understand the localization of the charge-carriers, our density functional theory (DFT) calculations showed that after injection of a single hole and a single electron, the hole is localized in the πorbital of NH₂-BDC whereas the electron is not only localized on the Ti 3d orbitals but also delocalized along the NH₂-BDC ligand. The delocalized states of electrons ensure their efficient transfer to the surface of MIL-125-NH₂ (Section S11). Subsequently, in our photocatalytic system, the photo-excited electron is transferred from the LUCOs of MIL-125-NH₂ to Ni₂P, as evidenced by the presence of Ni⁺ in the EPR spectrum of Ni₂P/MIL-125-NH₂ (Fig. 2 and Section S12), and then to the protons. Inductively couple plasma optical emission spectrometry (ICP-OES) studies (Section S13) and SEM mapping images of the Ni₂P/MIL-125-NH₂ (Fig. S12, S13) reveal that 90 % of Ni₂P NPs are attached and evenly distributed on the external surface of MIL-125-NH₂ crystals suggesting that efficient electron transfer

can occur. In terms of thermodynamics of electron transfer, from the energy diagram (Fig. S22), the conduction band of Ni₂P has a lower reduction potential ($E_{vac.}$ = -4.50 eV)⁴⁶ than the LUCOs of MIL-125-NH₂ ($E_{vac.}$ = -3.80 eV), and is in the same level as the reduction potential of H⁺/H₂ ($E_{vac.}$ = -4.50 eV, E_{NHE} = 0 eV).⁴³ This large negative energy difference between MIL-125-NH₂ and Ni₂P stems from the discrete Ti₈O₈ cluster on MIL-125-NH₂ being exceptionally reducing. This contrasts with TiO₂ in which the extended structure conduction band is at the lower reduction potential of -4.25 eV, compared to the discrete cluster. Consequently, in TiO₂, the lower reduction potential negates the reductive power of TiO₂ compared to MIL-125-NH₂, and therefore, decreases the effectiveness of the electron transfer to the Ni₂P.⁴⁷ The smaller thermodynamic driving force confirms the lower performance of Ni₂P/TiO₂.

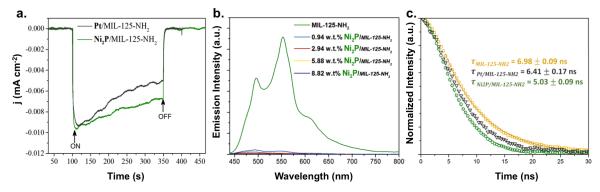


Fig. 2 EPR spectra of 9.2 (±0.4) wt% Ni₂P/MIL-125-NH₂ (green), MIL-125-NH₂ (red), Ni₂P (blue) after visible light irradiation.

Insights into the catalytic activity of Ni₂P can be obtained by comparing Ni₂P/MIL-125-NH₂ with other systems. Nasalevich *et al.* reported a system containing cobaloxime complexes encapsulated within the pores of MIL-125-NH₂ in MeCN/TEA/H₂O mixture. This system produces H₂ with a maximum rate of 637 μ mol g⁻¹ h⁻¹. Since the cobaloxime complex ($E_{vac.}$ = -4.25 eV) has a higher reduction potential than that of Ni₂P (but lower than the LUCOs of MIL-125-NH₂), the energy difference is less, which is a key reason for its inferior performance compared to Ni₂P/MIL-125-NH₂ (Fig. S23).²³ Matsuoka *et al.* reported that the Pt/MIL-125-NH₂ system in 0.01 M aqueous TEOA solution displays a maximum H₂ evolution rate of 525 μ mol g⁻¹ h⁻¹.²⁰ Upon testing Ni₂P/MIL-125-NH₂ in 0.01 M TEOA aqueous solution, we observed that the photocatalytic solution darkened and the MIL-125-NH₂ degraded and dissolved (Section S14.1).

In order to compare the performance of Ni₂P/MIL-125-NH₂ with Pt/MIL-125-NH₂, we synthesized "naked" Pt NPs⁴⁸ with the size of ~19 nm (Fig. S28, S29). We then mixed them with MIL-125-NH₂ and investigated the performance of this system using the same conditions used for Ni₂P/MIL-125-NH₂. The Pt/MIL-125-NH₂ produced H₂ with a maximum evolution rate of 269 μ mol g⁻¹ h⁻¹ (Fig. S30). Based on the energy diagram shown in Fig. S23, Pt might have higher driving force compared to Ni₂P for attracting the photogenerated electrons from the MOF; however, not all electrons transferred from MIL-125-NH₂ to Pt have enough energy for the reduction of protons from H⁺ to H₂. In addition, photochemical chronoamperometry measurements (Fig. 3a, S33, S34) showed that upon illumination both Ni₂P/MIL-125-NH₂ and Pt/MIL-125-NH₂ exhibit comparable initial photocurrents at the early stage, but the photocurrent in the presence of Pt NPs decays faster over time. This suggests the faster charge recombination in Pt/MIL-125-NH₂ compared to Ni₂P/MIL-125-NH₂, inhibiting thus its H₂ production performance.

The effectiveness of charge separation in the Ni_2P/MIL - 125- NH_2 and Pt/MIL-125- NH_2 was further studied by photoluminescence (PL) emission spectroscopy (Fig. 3b and S33). The suspension of MIL-125- NH_2 exhibits fluorescence with the maximum peak centered at ~560 nm when excited at 420 nm. The addition of the co-catalysts (Pt and Ni_2P NPs) diminishes the PL emission, indicating the electron transfer from MIL-125- NH_2 to the co-catalysts and depopulating the excited electrons in MIL-125- NH_2 . However, in the case of Ni_2P/MIL -125- NH_2 , the quenching of the photoluminescence is more drastic and when the amount of Ni_2P reaches 9.2 (\pm 0.4) wt% (optimum amount), the mixture Ni_2P/MIL -125- NH_2 shows no detectable photoluminescence emission, illustrating the key role of these NPs in attracting the electrons and thus eliminating the electron-hole recombination. On the other hand, the addition of the 2.0 (\pm 0.4) wt% amount of Pt (optimized Pt/MIL-125- NH_2 system), does not induce complete quenching of the PL emission. Lifetime measurements of MIL-125- NH_2 , and the optimized Pt/ MIL-125- NH_2 and Ni_2P/MIL -125- NH_2 systems revealed that the latter has shorter lifetime compared to the others (Fig. 3c), confirming the more efficient electron transfer from MIL-125- NH_2 to Ni_2P .

Fig. 3 (a) Photocurrent responses of MIL-125-NH₂ with the optimized amounts of co-catalysts (Ni₂P green and Pt black), (b) PL spectra (excited at 420 nm) for the suspensions of MIL-125-NH₂ with different amounts of Ni₂P and (c) Time Resolved PL decay curves of MIL-125-NH₂ (yellow squares), Pt/MIL-125-NH₂ (grey triangles) and Ni₂P/MIL-125-NH₂ (green circles). The excitation wavelength was 420 nm.

While it is not straightforward to compare the catalytic activity of Pt and Ni_2P , it is apparent that a good co-catalyst should be able to trap protons, transfer electrons, bond the hydrogen atoms, and desorb the H_2 molecules formed. Ni_2P NPs, with the presence of both Ni and P sites on their surface of the NPs acting as hydride and proton-acceptor centers exhibit particularly good behaviour for H_2 generation when combined with MIL-125-NH₂.^{49 50} These results highlight the impact of the co-catalyst in enhancing the performance of a photocatalytic MOF based system.⁵¹

Conclusions

In conclusion, we report a low-cost, stable, and easily prepared (based on mixing) photocatalytic system consisting of MIL-125-NH₂ and Ni₂P NPs that exhibits remarkable H₂ generation. The system appreciably outperforms Ni₂P/TiO₂ under UV irradiation and other visible-light active MOF systems, while maintaining its integrity for a long time. The absorptivity in the visible region, the charge separation in MIL-125-NH₂, the efficient electron transport to the external surface of MIL-125-NH₂ via a delocalized state, the efficient attraction of electrons by the Ni₂P NPs (compared to Pt NPs) and the inherent nature of Ni₂P to catalyze the H₂ generation are the key factors for the significantly enhanced photocatalytic activity of this system. With high apparent quantum yields under visible-light irradiation and easy scale-up synthesis of both MIL-125-NH₂ and Ni₂P NPs, this photocatalytic system brings itself a step closer to practical 'solar-driven' applications.

Conflicts of interest

KCS, BS, SK, CPI, TNN and EPFL have filed a patent application (EP17180055.0) that relates to visible-light active Ti-MOFs and cheap co-catalysts for photocatalytic water splitting and hydrogen generation.

Author Contribution

SK, TNN, CPI, BV and FME have performed and analysed all experiments described in the manuscript. GC, DO, AM and BS have performed the computational studies and analysed the data. NGC and KS have carried out the photocurrent experiments and AS and LF have designed, performed and analysed the EPR experiments. KCS led the project and KCS, SK, TNN and CPI wrote the article with contributions from all co-authors.

Acknowledgements

SK, TNN and KCS thank Swiss National Science Foundation (SNF) for funding under the Ambizione Energy Grant n.PZENP2_166888. CPI is grateful to the EU for a Marie Curie Fellowship (705861 – ASPAir, H2020-MSCA-IF-2015). GC is supported by the National Center of Competence in Research (NCCR), Materials' Revolution: Computational Design and Dis-covery of Novel Materials (MARVEL), of the Swiss National Science Foundation (SNSF). The research of DO is supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 666983, MaGic). AM thanks the Swedish Research Council (VR) for funding.

Notes and references

- (1) Ramachandran, R.; Menon, R. K. *International Journal of Hydrogen Energy* **1998**, *23*, 593.
- (2) Schoedel, A.; Ji, Z.; Yaghi, O. M. *Nat Energy* **2016**, *1*.
- (3) Chaubey, R.; Sahu, S.; James, O. O.; Maity, S. *RENEW. SUST. ENERG. REV.* **2013**, *23*, 443.
- (4) Lewis, N. S.; Nocera, D. G. Proceedings of the National Academy of Sciences **2006**, 103, 15729.
- (5) Osterloh, F. E. Chem. Mater. 2008, 20, 35.
- (6) Mills, A.; Le Hunte, S. J. Photochem. Photobiol. A **1997**, 108, 1.
- (7) Gao, W.-Z.; Xu, Y.; Chen, Y.; Fu, W.-F. Chem. Commun. **2015**, *51*, 13217.
- (8) Sun, Z.; Zheng, H.; Li, J.; Du, P. Energy & Environmental Science 2015, 8, 2668.
- (9) Rowsell, J. L. C.; Yaghi, O. M. Microporous and Mesoporous Materials 2004, 73, 3.
- (10) Li, B.; Wen, H.-M.; Cui, Y.; Zhou, W.; Qian, G.; Chen, B. *Advanced Materials* **2016**, 28, 8819.
- (11) Nelson, A. P.; Farha, O. K.; Mulfort, K. L.; Hupp, J. T. *Journal of the American Chemical Society* **2009**, *131*, 458.
- (12) Wang, S.; Wang, X. Small **2015**, 11, 3097.
- (13) Yu, X. C., Seth M. J. Am. Chem. Soc. **2016**, 138, 12320.
- (14) Zhang, T.; Lin, W. Chem. Soc. Rev. 2014, 43, 5982.
- (15) Wang, J.-L.; Wang, C.; Lin, W. ACS Catalysis 2012, 2, 2630.
- (16) Pullen, S.; Ott, S. *Topics in Catalysis* **2016**, *59*, 1712.
- (17) He, J.; Wang, J.; Chen, Y.; Zhang, J.; Duan, D.; Wang, Y.; Yan, Z. *Chemical Communications* **2014**, *50*, 7063.
- (18) Fateeva, A.; Chater, P. A.; Ireland, C. P.; Tahir, A. A.; Khimyak, Y. Z.; Wiper, P. V.; Darwent, J. R.; Rosseinsky, M. J. *Angew. Chem. Int. Ed.* **2012**, *51*, 7440.

- (19) Meyer, K.; Bashir, S.; Llorca, J.; Idriss, H.; Ranocchiari, M.; van Bokhoven, J. A. *Chem. Eur. J.* **2016**, *22*, 13894.
- (20) Horiuchi, Y.; Toyao, T.; Saito, M.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Anpo, M.; Matsuoka, M. *J. Phys. Chem. C* **2012**, *116*, 20848.
- (21) Toyao, T.; Saito, M.; Horiuchi, Y.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Matsuoka, M. *Catal. Sci. Technol.* **2013**, *3*, 2092.
- (22) Wang, D.; Song, Y.; Cai, J.; Wu, L.; Li, Z. New Journal of Chemistry 2016, 40, 9170.
- (23) Nasalevich, M. A.; Becker, R.; Ramos-Fernandez, E. V.; Castellanos, S.; Veber, S. L.; Fedin,
- M. V.; Kapteijn, F.; Reek, J. N. H.; van der Vlugt, J. I.; Gascon, J. Energy Environ. Sci. 2015, 8, 364.
- (24) Gomes Silva, C.; Luz, I.; Llabrés i Xamena, F. X.; Corma, A.; García, H. *Chem. Eur. J.* **2010**, *16*, 11133.
- (25) Wang, C.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc. 2012, 134, 7211.
- (26) Zhou, J.-J.; Wang, R.; Liu, X.-L.; Peng, F.-M.; Li, C.-H.; Teng, F.; Yuan, Y.-P. *Appl. Surf. Sci.* **2015**, *346*, 278.
- (27) Xiao, J.-D.; Shang, Q.; Xiong, Y.; Zhang, Q.; Luo, Y.; Yu, S.-H.; Jiang, H.-L. *Angew. Chem.* **2016**, *128*, 9535.
- (28) Toyao, T.; Saito, M.; Dohshi, S.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Horiuchi, Y.; Matsuoka, M. *Chem. Commun.* **2014**, *50*, 6779.
- (29) Sun, X.; Yu, Q.; Zhang, F.; Wei, J.; Yang, P. Catalysis Science & Technology 2016, 6, 3840.
- (30) Shi, D.; Zheng, R.; Sun, M.-J.; Cao, X.; Sun, C.-X.; Cui, C.-J.; Liu, C.-S.; Zhao, J.; Du, M. *Angewandte Chemie International Edition* **2017**, *56*, 14637.
- (31) Wu, Z.-L.; Wang, C.-H.; Zhao, B.; Dong, J.; Lu, F.; Wang, W.-H.; Wang, W.-C.; Wu, G.-J.; Cui, J.-Z.; Cheng, P. *Angewandte Chemie International Edition* **2016**, *55*, 4938.
- (32) Dong, X.-Y.; Zhang, M.; Pei, R.-B.; Wang, Q.; Wei, D.-H.; Zang, S.-Q.; Fan, Y.-T.; Mak, T. C. W. *Angew. Chem. Int. Ed.* **2016**, *55*, 2073.
- (33) Cao, S.; Chen, Y.; Wang, C.-J.; He, P.; Fu, W.-F. Chemical Communications 2014, 50, 10427.
- (34) Ohno, T.; Sarukawa, K.; Tokieda, K.; Matsumura, M. J. Catal. 2001, 203, 82.
- (35) Kumar, D. P.; Choi, J.; Hong, S.; Reddy, D. A.; Lee, S.; Kim, T. K. *ACS Sustain. Chem. Eng.* **2016**, *4*, 7158.
- (36) Ran, J.; Zhang, J.; Yu, J.; Jaroniec, M.; Qiao, S. Z. Chem. Soc. Rev. 2014, 43, 7787.
- (37) Kuhn, H. B., S.; Schmidt, R. Pure and Applied Chemistry **2004**, 76., 2105.
- (38) Hatchard, C. P., C. A. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences; The Royal Society: 1956 1956, 235, 518.
- (39) Shen, L.; Luo, M.; Liu, Y.; Liang, R.; Jing, F.; Wu, L. *Applied Catalysis B: Environmental* **2015**, *166*, 445.
- (40) Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. *Nature* **2006**, 440, 295.
- (41) Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Chem. Rev. 2010, 110, 6503.
- (42) Nasalevich, M. A.; Hendon, C. H.; Santaclara, J. G.; Svane, K.; van der Linden, B.; Veber, S. L.; Fedin, M. V.; Houtepen, A. J.; van der Veen, M. A.; Kapteijn, F.; Walsh, A.; Gascon, J. **2016**, *6*, 23676.
- (43) Hendon, C. H.; Tiana, D.; Fontecave, M.; Sanchez, C.; D'arras, L.; Sassoye, C.; Rozes, L.; Mellot-Draznieks, C.; Walsh, A. *J. Am. Chem. Soc.* **2013**, *135*, 10942.
- (44) Walsh, A.; Catlow, C. R. A. ChemPhysChem **2010**, 11, 2341.
- (45) Santaclara, J. G.; Nasalevich, M. A.; Castellanos, S.; Evers, W. H.; Spoor, F. C. M.; Rock, K.; Siebbeles, L. D. A.; Kapteijn, F.; Grozema, F.; Houtepen, A.; Gascon, J.; Hunger, J.; van der Veen, M. A. *Chem. Sus. Chem.* **2016**, *9*, 388.
- (46) Sharon, M.; Tamizhmani, G.; Levy-Clement, C.; Rioux, J. Solar Cells 1989, 26, 303.

- (47) Xu, Y.; Schoonen, M. A. A. American Mineralogist 2000, 85, 543.
- (48) Zhang, B.; Xue, Y.; Sun, H.; Jiang, A.; Li, Z.; Hao, J. RSC Advances 2016, 6, 56083.
- (49) Zou, X.; Zhang, Y. Chem. Soc. Rev. 2015, 44, 5148.
- (50) Liu, P.; Rodriguez, J. A. Journal of the American Chemical Society 2005, 127, 14871.
- (51) Chen, Y.; Qin, Z. Catalysis Science & Technology 2016, 6, 8212.