44 research outputs found

    Measuring co-authorship and networking-adjusted scientific impact

    Get PDF
    Appraisal of the scientific impact of researchers, teams and institutions with productivity and citation metrics has major repercussions. Funding and promotion of individuals and survival of teams and institutions depend on publications and citations. In this competitive environment, the number of authors per paper is increasing and apparently some co-authors don't satisfy authorship criteria. Listing of individual contributions is still sporadic and also open to manipulation. Metrics are needed to measure the networking intensity for a single scientist or group of scientists accounting for patterns of co-authorship. Here, I define I1 for a single scientist as the number of authors who appear in at least I1 papers of the specific scientist. For a group of scientists or institution, In is defined as the number of authors who appear in at least In papers that bear the affiliation of the group or institution. I1 depends on the number of papers authored Np. The power exponent R of the relationship between I1 and Np categorizes scientists as solitary (R>2.5), nuclear (R=2.25-2.5), networked (R=2-2.25), extensively networked (R=1.75-2) or collaborators (R<1.75). R may be used to adjust for co-authorship networking the citation impact of a scientist. In similarly provides a simple measure of the effective networking size to adjust the citation impact of groups or institutions. Empirical data are provided for single scientists and institutions for the proposed metrics. Cautious adoption of adjustments for co-authorship and networking in scientific appraisals may offer incentives for more accountable co-authorship behaviour in published articles.Comment: 25 pages, 5 figure

    PubFocus: semantic MEDLINE/PubMed citations analytics through integration of controlled biomedical dictionaries and ranking algorithm

    Get PDF
    BACKGROUND: Understanding research activity within any given biomedical field is important. Search outputs generated by MEDLINE/PubMed are not well classified and require lengthy manual citation analysis. Automation of citation analytics can be very useful and timesaving for both novices and experts. RESULTS: PubFocus web server automates analysis of MEDLINE/PubMed search queries by enriching them with two widely used human factor-based bibliometric indicators of publication quality: journal impact factor and volume of forward references. In addition to providing basic volumetric statistics, PubFocus also prioritizes citations and evaluates authors' impact on the field of search. PubFocus also analyses presence and occurrence of biomedical key terms within citations by utilizing controlled vocabularies. CONCLUSION: We have developed citations' prioritisation algorithm based on journal impact factor, forward referencing volume, referencing dynamics, and author's contribution level. It can be applied either to the primary set of PubMed search results or to the subsets of these results identified through key terms from controlled biomedical vocabularies and ontologies. NCI (National Cancer Institute) thesaurus and MGD (Mouse Genome Database) mammalian gene orthology have been implemented for key terms analytics. PubFocus provides a scalable platform for the integration of multiple available ontology databases. PubFocus analytics can be adapted for input sources of biomedical citations other than PubMed

    A comparison of results of empirical studies of supplementary search techniques and recommendations in review methodology handbooks: a methodological review

    Get PDF
    Background The purpose and contribution of supplementary search methods in systematic reviews is increasingly acknowledged. Numerous studies have demonstrated their potential in identifying studies or study data that would have been missed by bibliographic database searching alone. What is less certain is how supplementary search methods actually work, how they are applied, and the consequent advantages, disadvantages and resource implications of each search method. The aim of this study is to compare current practice in using supplementary search methods with methodological guidance. Methods Four methodological handbooks in informing systematic review practice in the UK were read and audited to establish current methodological guidance. Studies evaluating the use of supplementary search methods were identified by searching five bibliographic databases. Studies were included if they (1) reported practical application of a supplementary search method (descriptive) or (2) examined the utility of a supplementary search method (analytical) or (3) identified/explored factors that impact on the utility of a supplementary method, when applied in practice. Results Thirty-five studies were included in this review in addition to the four methodological handbooks. Studies were published between 1989 and 2016, and dates of publication of the handbooks ranged from 1994 to 2014. Five supplementary search methods were reviewed: contacting study authors, citation chasing, handsearching, searching trial registers and web searching. Conclusions There is reasonable consistency between recommended best practice (handbooks) and current practice (methodological studies) as it relates to the application of supplementary search methods. The methodological studies provide useful information on the effectiveness of the supplementary search methods, often seeking to evaluate aspects of the method to improve effectiveness or efficiency. In this way, the studies advance the understanding of the supplementary search methods. Further research is required, however, so that a rational choice can be made about which supplementary search strategies should be used, and when

    during drying

    No full text
    In this study, anthocyanins in three fresh fig varieties (Ficus carica L.) cultivated in Turkey were characterised and quantified by HPLC/DAD and HPLC/MS. In addition, the carotenoid composition of Sarilop and Sarizeybek, yellow fig varieties, was determined, and then the ripening- and drying-related changes in carotenoids and surface colour of figs were monitored during conventional sun-drying. Four different anthocyanins, cyanidin-3-glucoside, cyanidin-3,5-diglucoside, cyanidin-3-rutinoside (major anthocyanin) and pelargonidin-3-glucoside, were identified in samples. Lutein, zeaxanthin, beta-cryptoxanthin and beta-carotene were carotenoids in yellow fig varieties. Approximately 80% of carotenoid compounds in yellow fig varieties degraded at the end of drying (i.e. seventh day). L (lightness), a (redness and greenness) and b (yellowness and blueness) colour parameters were measured by Hunter Lab system. Great changes in carotenoid composition and surface colour were observed at ripening stage on tree. A significant reduction in L and b values that refers to browning in figs was made in the first 3 days of drying process
    corecore