92 research outputs found

    The current trend of exosome in epithelial ovarian cancer studies: A bibliometric review

    Get PDF
    Background: Epithelial ovarian cancer (EOC) is the most common type of ovarian cancer. About 90% of ovary tumors are epithelial. The current treatment for EOC involves surgical debulking of the tumors followed by a combination of chemotherapy. While most patients achieve complete remission, many EOCs will recur and develop chemoresistance. The cancer cells can adapt to several stress stimuli, becoming resistant. Therefore, new ways to fight resistant cells during the disease are being studied. Recently, exosomes, which reflect cell behavior in normal and pathological conditions such as epithelial ovarian cancer, are of academic interest as new biomarkers for diagnosis and therapy. Consequently, the current study aimed to investigate the research output of exosomes in EOC. Method: A bibliometric method was used for analyzing publications on exosome and epithelial ovarian cancer from the beginning to 15 October 2022 by searching keywords in Scopus, PubMed and Google scholar. Annual scientific publications, authors, citations, journals, co-authorships, and keywords co-occurrence were analyzed and plotted using Microsoft Office Excel and VOS viewer. 39 original journal articles and 3 reviews have been published since 2015 up to 15 October 2022. Results: The findings showed that China is the top country in research output, international collaborations, organization, author, and sponsorship. The top journals were the Journal of Ovarian Research, Oncotarget, and Tumor Biology, all in the United States. The top institution was Shanghai Jiao Tong University in China. The top author was Xipeng Wang. Co-occurrence analysis showed that academics’ interest is toward:1) 1) Exosomes as prognostic biomarkers of EOC as well as their role in the proliferation and migration of cells. 2) The role of exosomes in metastasis through different mechanisms; 3) The role of exosomes in epithelial-mesenchymal transition of ovarian cancer cells; 4) The diagnostic role of EVs in EOC; and 5) Conferring chemoresistance in EOC through the exosomal transfer of miRNAs. Conclusion: Research on the exosome and EOC has an increasing trend, and China is much more involved than other countries in research, financial support, and international cooperation. These findings could aid researcher in understanding novel ideas and subjects interested by sponsors in this field. Copyright © 2023 Baghban, Ullah and Nabipour

    Mesenchymal stromal/stem cells and their exosomes for restoration of spermatogenesis in non-obstructive azoospermia: a systemic review

    Get PDF
    Stem cells have been introduced as new promising therapeutic agents in treatment of degenerative diseases because of having high differentiation potential while maintaining the ability to self-replicate and retaining features of their source cells. Among different type of cell therapies, mesenchymal stromal/stem cell (MSC) therapy is being increasingly developed as a new way to treat structural defects that need to be repaired and regenerated. Non-obstructive azoospermia (NOA) is a reproductive disease in men that causes infertility in 10% of infertile men. Based on in vitro studies, MSCs from different tissue sources have been differentiated into germ cells or gamete progenitor cells by simple methods in both male and female. On the other hand, the therapeutic effects of MSCs have been evaluated for the treatment of NOA animal models created by chemical or surgical compounds. The results of these studies confirmed successful allotransplantation or xenotransplantation of MSCs in the seminiferous tubules. As well, it has been reported that exosomes secreted by MSCs are able to induce the process of spermatogenesis in the testes of infertile animal models. Despite numerous advances in the treatment of reproductive diseases in men and women with the help of MSCs or their exosomes, no clinical trial has been terminated on the treatment of NOA. This systematic review attempts to investigate the possibility of MSC therapy for NOA in men

    Development and characterization of a novel conductive polyaniline-g-polystyrene/Fe 3 O 4 nanocomposite for the treatment of cancer

    Get PDF
    The goal of this study is to synthesize, characterize and investigate some physicochemical properties of conductive polyaniline-g-polystyrene/Fe 3 O 4 (Fe 3 O 4 /PSt-g-PANi) nanocomposites. For this purpose, initially, Fe 3 O 4 nanoparticles were synthesized by a co-precipitation method. Then, the desired nanocomposite was synthesized in two steps. First, the atom transfer radical polymerization (ATRP) of styrene was performed using an ATRP initiator attached to the surface of Fe 3 O 4 nanoparticles, followed by functionalization of the Fe 3 O 4 -PSt with amine groups (�NH 2 ). Second, surface oxidative graft copolymerization of aniline was accomplished using the �NH 2 moieties on the Fe 3 O 4 /PSt-NH 2 as the anchoring sites. The prepared materials were characterized by various instruments, including TEM, SEM, TGA, EDX, FT-IR, XRD and conductivity measurements. The results indicated that the synthesized conductive polymer/Fe 3 O 4 nanocomposites had higher electrical conductivity and thermal resistance than those of the corresponding homopolymers. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

    MRI Tracking of Marine Proliferating Cells In Vivo Using Anti-Oct4 Antibody-Conjugated Iron Nanoparticles for Precision in Regenerative Medicine

    Get PDF
    Marine invertebrates are multicellular organisms consisting of a wide range of marine environmental species. Unlike vertebrates, including humans, one of the challenges in identifying and tracking invertebrate stem cells is the lack of a specific marker. Labeling stem cells with magnetic particles provides a non-invasive, in vivo tracking method using MRI. This study suggests antibody-conjugated iron nanoparticles (NPs), which are detectable with MRI for in vivo tracking, to detect stem cell proliferation using the Oct4 receptor as a marker of stem cells. In the first phase, iron NPs were fabricated, and their successful synthesis was confirmed using FTIR spectroscopy. Next, the Alexa Fluor anti-Oct4 antibody was conjugated with as-synthesized NPs. Their affinity to the cell surface marker in fresh and saltwater conditions was confirmed using two types of cells, murine mesenchymal stromal/stem cell culture and sea anemone stem cells. For this purpose, 106 cells of each type were exposed to NP-conjugated antibodies and their affinity to antibodies was confirmed by an epi-fluorescent microscope. The presence of iron-NPs imaged with the light microscope was confirmed by iron staining using Prussian blue stain. Next, anti-Oct4 antibodies conjugated with iron NPs were injected into a brittle star, and proliferating cells were tracked by MRI. To sum up, anti-Oct4 antibodies conjugated with iron NPs not only have the potential for identifying proliferating stem cells in different cell culture conditions of sea anemone and mouse cell cultures but also has the potential to be used for in vivo MRI tracking of marine proliferating cells. © 2023 by the authors

    Families’ roles in children’s literacy in the UK throughout the 20th century

    Get PDF
    This paper explores the changing roles of families in children’s developing literacy in the UK in the last century. It discusses how, during this time, understandings of reading and writing have evolved into the more nuanced notion of literacy. Further, in acknowledging changes in written communication practices, and shifting attitudes to reading and writ- ing, the paper sketches out how families have always played some part in the literacy of younger generations; though reading was frequently integral to the lives of many families throughout the past century, we consider in particular the more recent enhancement of children’s literacy through targeted family programmes. The paper considers policy implications for promoting young children’s literacy through work with families

    The Survey of Contamination of Platelet Product with Aerobic Bacteria in Isfahan Blood Transfusion Center

    No full text
    Introduction: Although nowadays the risk of transmission of bacterial pathogens through blood transfusion has been decreased, but there is the possibility of transmission of these factors by injection of these kind of products. The purpose of this survey was determination of contamination of platelet products with aerobic bacteria in Isfahan Blood Transfusion Center. Methods: In the spring and summer of 2014, 2000 platelet product samples were examined randomly in 5 months for aerobic bacterial contamination. First, samples were cultured in fluid thioglycollate medium. The bacteria that were grown in this medium were identified by Gram staining and biochemical tests. Then, DNA was extracted from isolated bacteria and PCR was done for 16S rRNA gene. After that the PCR products were sequenced and the bacteria were recognized at the level of species. Results: At this research, 4 contaminated samples were identified. Isolated bacteria were including: Klebsiella pneumoniae 1 case, Staphylococcus aureus 1 case, Staphylococcus epidermidis 1 case and Staphylococcus haemolyticus 1 case.    After sequencing of 16S rRNA gene, the homology was observed 97%, 83%, 99%, and 90% at theses bacteria, respectively. Discussion: According to the results of this research, platelet products may be contaminated with aerobic bacteria. Therefore, providing appropriate conditions in transfusion centers and other therapeutic centers for doing screening tests on platelet products to identifying bacterial contaminations before using of these products seems to be necessary

    Evaluation of Solid Waste Management in the Chemistry Laboratories of Tehran Universities

    No full text
    Background and Objectives: Particular importance of hazardous wastes is due to having characteristics such as toxicity, flammability, corrosively and reactivity. Some of the chemical wastes due to having hazardous materials must be collected and managed in a proper manner, since they are potentially harmful to the environment. Owing to the fact that educational centers have important roles in developing countries, so the main objective of the present study was to investigate, hazardous waste management in chemistry laboratories of Ministry of Science universities, in Tehran, Iran.Materials and Methods: Study area of this research includes all chemistry laboratories in Tehran universities which were covered by Ministry of Science. To obtain the number of samples, based on Scientific Principles and identification formula, 64 samples were calculated. In addition, sampling was done by Stratified sampling. Validated checklists were used for data gathering. Data analysis were done by Descriptive statistics (mean, frequency and etc.) and inferential statistics (kruskal- wallis test).Results: results obtained in this study indicate that Sharif University by obtaining the mean score of 60.5 and Tehran University by obtaining the mean score of 4.5-6 are placed in best and worst rank, respectively. Beheshty, Alzahra and Tarbiat Moallem univesities by acquiring the mean score of 20-28.5 have a same position in ranking table.  Conclusion: Results show that most of the studied laboratories do not have any collection program and only 26.5 percent of them have acceptable programs.The separation and storing program observed in about 12.5 percent . Hazardous wastes management in chemistry laboratory of Tehran Universities was not in good status. And from the standpoint of management, only 12.5 percent of studied cases are in good status, while 75 percent was in undesirable status

    Designing, docking and heterologous expression of an anti-HER2 affibody molecule

    No full text
    Affibody molecules are small protein scaffolds mostly based on triple-helical bundle protein domains. Many triple helix-based affibody proteins have shown prominent properties for tumor imaging and therapy. In our opinion, the structural organizations and the sizes of affibody molecules could be modified to increase their recognition abilities and binding affinities to human epidermal growth factor receptor type 2 (HER2). Thereby, the purpose of this study was to design and characterize a novel platform of affibody molecule consisting of five separate helixes (encoding 99 amino acids with a duplicate of helixes 1 and 2 at N-terminus plus GGGC chelator peptide sequence at C-terminus) enable of binding to HER2 with higher avidity. Using in silico screening methods, the structure and the interactive potential of designed affibody was comparatively investigated. The molecular expression and production of the designed affibody in Escherichia coli cells was successfully examined and reported
    corecore