454 research outputs found

    Green's function for a Schroedinger operator and some related summation formulas

    Full text link
    Summation formulas are obtained for products of associated Lagurre polynomials by means of the Green's function K for the Hamiltonian H = -{d^2\over dx^2} + x^2 + Ax^{-2}, A > 0. K is constructed by an application of a Mercer type theorem that arises in connection with integral equations. The new approach introduced in this paper may be useful for the construction of wider classes of generating function.Comment: 14 page

    Inverse Eigenvalue Problems for Perturbed Spherical Schroedinger Operators

    Full text link
    We investigate the eigenvalues of perturbed spherical Schr\"odinger operators under the assumption that the perturbation q(x)q(x) satisfies xq(x)L1(0,1)x q(x) \in L^1(0,1). We show that the square roots of eigenvalues are given by the square roots of the unperturbed eigenvalues up to an decaying error depending on the behavior of q(x)q(x) near x=0x=0. Furthermore, we provide sets of spectral data which uniquely determine q(x)q(x).Comment: 14 page

    Relational time in generally covariant quantum systems: four models

    Get PDF
    We analize the relational quantum evolution of generally covariant systems in terms of Rovelli's evolving constants of motion and the generalized Heisenberg picture. In order to have a well defined evolution, and a consistent quantum theory, evolving constants must be self-adjoint operators. We show that this condition imposes strong restrictions to the choices of the clock variables. We analize four cases. The first one is non- relativistic quantum mechanics in parametrized form. We show that, for the free particle case, the standard choice of time is the only one leading to self-adjoint evolving constants. Secondly, we study the relativistic case. We show that the resulting quantum theory is the free particle representation of the Klein Gordon equation in which the position is a perfectly well defined quantum observable. The admissible choices of clock variables are the ones leading to space-like simultaneity surfaces. In order to mimic the structure of General Relativity we study the SL(2R) model with two Hamiltonian constraints. The evolving constants depend in this case on three independent variables. We show that it is possible to find clock variables and inner products leading to a consistent quantum theory. Finally, we discuss the quantization of a constrained model having a compact constraint surface. All the models considered may be consistently quantized, although some of them do not admit any time choice such that the equal time surfaces are transversal to the orbits.Comment: 18 pages, revtex fil

    Development of a Flow-Trough Microarray based Reverse Transcriptase Multiplex Ligation-Dependent Probe Amplification Assay for the Detection of European Bunyaviruses

    Get PDF
    It is suspected that apart from tick-borne encephalitis virus several additional European Arboviruses such as the sandfly borne Toscana virus, sandfly fever Sicilian virus and sandfly fever Naples virus, mosquito-borne Tahyna virus, Inkoo virus, Batai virus and tick-borne Uukuniemi virus cause aseptic meningo-encephalitis or febrile disease in Europe. Currently, the microarray technology is developing rapidly and there are many efforts to apply it to infectious diseases diagnostics. In order to arrive at an assay system useful for high throughput analysis of samples from aseptic meningo-encephalitis cases the authors developed a combined multiplex ligation-dependent probe amplification and flow-through microarray assay for the detection of European Bunyaviruses. These results show that this combined assay indeed is highly sensitive, and specific for the accurate detection of multiple viruses

    Quantum Effects for the Dirac Field in Reissner-Nordstrom-AdS Black Hole Background

    Full text link
    The behavior of a charged massive Dirac field on a Reissner-Nordstrom-AdS black hole background is investigated. The essential self-adjointness of the Dirac Hamiltonian is studied. Then, an analysis of the discharge problem is carried out in analogy with the standard Reissner-Nordstrom black hole case.Comment: 18 pages, 5 figures, Iop styl

    Absence of Normalizable Time-periodic Solutions for The Dirac Equation in Kerr-Newman-dS Black Hole Background

    Full text link
    We consider the Dirac equation on the background of a Kerr-Newman-de Sitter black hole. By performing variable separation, we show that there exists no time-periodic and normalizable solution of the Dirac equation. This conclusion holds true even in the extremal case. With respect to previously considered cases, the novelty is represented by the presence, together with a black hole event horizon, of a cosmological (non degenerate) event horizon, which is at the root of the possibility to draw a conclusion on the aforementioned topic in a straightforward way even in the extremal case.Comment: 12 pages. AMS styl

    A Conformal Affine Toda Model of 2D-Black Holes the End-Point State and the S-Matrix

    Full text link
    In this paper we investigate in more detail our previous formulation of the dilaton-gravity theory by Bilal--Callan--de~Alwis as a SL2SL_2-conformal affine Toda (CAT) theory. Our main results are: i) a field redefinition of the CAT-basis in terms of which it is possible to get the black hole solutions already known in the literature; ii) an investigation the scattering matrix problem for the quantum black hole states. It turns out that there is a range of values of the NN free-falling shock matter fields forming the black hole solution, in which the end-point state of the black hole evaporation is a zero temperature regular remnant geometry. It seems that the quantum evolution to this final state is non-unitary, in agreement with Hawking's scenario for the black hole evaporation.Comment: ROM2F-93-03, 27 pages, phyzz

    Singular Value Decomposition of Operators on Reproducing Kernel Hilbert Spaces

    Full text link
    Reproducing kernel Hilbert spaces (RKHSs) play an important role in many statistics and machine learning applications ranging from support vector machines to Gaussian processes and kernel embeddings of distributions. Operators acting on such spaces are, for instance, required to embed conditional probability distributions in order to implement the kernel Bayes rule and build sequential data models. It was recently shown that transfer operators such as the Perron-Frobenius or Koopman operator can also be approximated in a similar fashion using covariance and cross-covariance operators and that eigenfunctions of these operators can be obtained by solving associated matrix eigenvalue problems. The goal of this paper is to provide a solid functional analytic foundation for the eigenvalue decomposition of RKHS operators and to extend the approach to the singular value decomposition. The results are illustrated with simple guiding examples

    Inverse Spectral-Scattering Problem with Two Sets of Discrete Spectra for the Radial Schroedinger Equation

    Full text link
    The Schroedinger equation on the half line is considered with a real-valued, integrable potential having a finite first moment. It is shown that the potential and the boundary conditions are uniquely determined by the data containing the discrete eigenvalues for a boundary condition at the origin, the continuous part of the spectral measure for that boundary condition, and a subset of the discrete eigenvalues for a different boundary condition. This result extends the celebrated two-spectrum uniqueness theorem of Borg and Marchenko to the case where there is also a continuous spectru

    Quantum harmonic oscillator systems with disorder

    Full text link
    We study many-body properties of quantum harmonic oscillator lattices with disorder. A sufficient condition for dynamical localization, expressed as a zero-velocity Lieb-Robinson bound, is formulated in terms of the decay of the eigenfunction correlators for an effective one-particle Hamiltonian. We show how state-of-the-art techniques for proving Anderson localization can be used to prove that these properties hold in a number of standard models. We also derive bounds on the static and dynamic correlation functions at both zero and positive temperature in terms of one-particle eigenfunction correlators. In particular, we show that static correlations decay exponentially fast if the corresponding effective one-particle Hamiltonian exhibits localization at low energies, regardless of whether there is a gap in the spectrum above the ground state or not. Our results apply to finite as well as to infinite oscillator systems. The eigenfunction correlators that appear are more general than those previously studied in the literature. In particular, we must allow for functions of the Hamiltonian that have a singularity at the bottom of the spectrum. We prove exponential bounds for such correlators for some of the standard models
    corecore