17 research outputs found
Quantitative imaging of concentrated suspensions under flow
We review recent advances in imaging the flow of concentrated suspensions,
focussing on the use of confocal microscopy to obtain time-resolved information
on the single-particle level in these systems. After motivating the need for
quantitative (confocal) imaging in suspension rheology, we briefly describe the
particles, sample environments, microscopy tools and analysis algorithms needed
to perform this kind of experiments. The second part of the review focusses on
microscopic aspects of the flow of concentrated model hard-sphere-like
suspensions, and the relation to non-linear rheological phenomena such as
yielding, shear localization, wall slip and shear-induced ordering. Both
Brownian and non-Brownian systems will be described. We show how quantitative
imaging can improve our understanding of the connection between microscopic
dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of
methodology. Submitted for special volume 'High Solid Dispersions' ed. M.
Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009);
22 pages, 16 fig
Soft Dynamics simulation: 2. Elastic spheres undergoing a T1 process in a viscous fluid
Robust empirical constitutive laws for granular materials in air or in a
viscous fluid have been expressed in terms of timescales based on the dynamics
of a single particle. However, some behaviours such as viscosity bifurcation or
shear localization, observed also in foams, emulsions, and block copolymer
cubic phases, seem to involve other micro-timescales which may be related to
the dynamics of local particle reorganizations. In the present work, we
consider a T1 process as an example of a rearrangement. Using the Soft dynamics
simulation method introduced in the first paper of this series, we describe
theoretically and numerically the motion of four elastic spheres in a viscous
fluid. Hydrodynamic interactions are described at the level of lubrication
(Poiseuille squeezing and Couette shear flow) and the elastic deflection of the
particle surface is modeled as Hertzian. The duration of the simulated T1
process can vary substantially as a consequence of minute changes in the
initial separations, consistently with predictions. For the first time, a
collective behaviour is thus found to depend on another parameter than the
typical volume fraction in particles.Comment: 11 pages - 5 figure
Phenomenology and physical origin of shear-localization and shear-banding in complex fluids
We review and compare the phenomenological aspects and physical origin of
shear-localization and shear-banding in various material types, namely
emulsions, suspensions, colloids, granular materials and micellar systems. It
appears that shear-banding, which must be distinguished from the simple effect
of coexisting static-flowing regions in yield stress fluids, occurs in the form
of a progressive evolution of the local viscosity towards two significantly
different values in two adjoining regions of the fluids in which the stress
takes slightly different values. This suggests that from a global point of view
shear-banding in these systems has a common physical origin: two physical
phenomena (for example, in colloids, destructuration due to flow and
restructuration due to aging) are in competition and, depending on the flow
conditions, one of them becomes dominant and makes the system evolve in a
specific direction.Comment: The original publication is available at http://www.springerlink.co
Recent experimental probes of shear banding
Recent experimental techniques used to investigate shear banding are
reviewed. After recalling the rheological signature of shear-banded flows, we
summarize the various tools for measuring locally the microstructure and the
velocity field under shear. Local velocity measurements using dynamic light
scattering and ultrasound are emphasized. A few results are extracted from
current works to illustrate open questions and directions for future research.Comment: Review paper, 23 pages, 11 figures, 204 reference
Landmark-based spatial navigation across the human lifespan
Human spatial cognition has been mainly characterized in terms of egocentric (body-centered) and allocentric (world-centered) wayfinding behavior. It was hypothesized that allocentric spatial coding, as a special high-level cognitive ability, develops later and deteriorates earlier than the egocentric one throughout lifetime. We challenged this hypothesis by testing the use of landmarks versus geometric cues in a cohort of 96 deeply phenotyped participants, who physically navigated an equiangular Y maze, surrounded by landmarks or an anisotropic one. The results show that an apparent allocentric deficit in children and aged navigators is caused specifically by difficulties in using landmarks for navigation while introducing a geometric polarization of space made these participants as efficient allocentric navigators as young adults. This finding suggests that allocentric behavior relies on two dissociable sensory processing systems that are differentially affected by human aging. Whereas landmark processing follows an inverted-U dependence on age, spatial geometry processing is conserved, highlighting its potential in improving navigation performance across the lifespan