887 research outputs found
Charging induced asymmetry in molecular conductors
We investigate the origin of asymmetry in various measured current-voltage
(I-V) characteristics of molecules with no inherent spatial asymmetry, with
particular focus on a recent break junction measurement. We argue that such
asymmetry arises due to unequal coupling with the contacts and a consequent
difference in charging effects, which can only be captured in a self-consistent
model for molecular conduction. The direction of the asymmetry depends on the
sign of the majority carriers in the molecule. For conduction through highest
occupied molecular orbitals (i.e. HOMO or p-type conduction), the current is
smaller for positive voltage on the stronger contact, while for conduction
through lowest unoccupied molecular orbitals (i.e. LUMO or n-type conduction),
the sense of the asymmetry is reversed. Within an extended Huckel description
of the molecular chemistry and the contact microstructure (with two adjustable
parameters, the position of the Fermi energy and the sulphur-gold bond length),
an appropriate description of Poisson's equation, and a self-consistently
coupled non-equilibrium Green's function (NEGF) description of transport, we
achieve good agreement between theoretical and experimental I-V
characteristics, both in shape as well as overall magnitude.Comment: length of the paper has been extended (4 pages to 6 pages), two new
figures have been added (3 figures to 5 figures), has been accepted for PR
Orbital Interaction Mechanisms of Conductance Enhancement and Rectification by Dithiocarboxylate Anchoring Group
We study computationally the electron transport properties of
dithiocarboxylate terminated molecular junctions. Transport properties are
computed self-consistently within density functional theory and nonequilibrium
Green's functions formalism. A microscopic origin of the experimentally
observed current amplification by dithiocarboxylate anchoring groups is
established. For the 4,4'-biphenyl bis(dithiocarboxylate) junction, we find
that the interaction of the lowest unoccupied molecular orbital (LUMO) of the
dithiocarboxylate anchoring group with LUMO and highest occupied molecular
orbital (HOMO) of the biphenyl part results in bonding and antibonding
resonances in the transmission spectrum in the vicinity of the electrode Fermi
energy. A new microscopic mechanism of rectification is predicted based on the
electronic structure of asymmetrical anchoring groups. We show that the peaks
in the transmission spectra of 4'-thiolato-biphenyl-4-dithiocarboxylate
junction respond differently to the applied voltage. Depending upon the origin
of a transmission resonance in the orbital interaction picture, its energy can
be shifted along with the chemical potential of the electrode to which the
molecule is more strongly or more weakly coupled
Bi-stable tunneling current through a molecular quantum dot
An exact solution is presented for tunneling through a negative-U d-fold
degenerate molecular quantum dot weakly coupled to electrical leads. The tunnel
current exhibits hysteresis if the level degeneracy of the negative-U dot is
larger than two (d>2). Switching occurs in the voltage range V1 < V < V2 as a
result of attractive electron correlations in the molecule, which open up a new
conducting channel when the voltage is above the threshold bias voltage V2.
Once this current has been established, the extra channel remains open as the
voltage is reduced down to the lower threshold voltage V1. Possible
realizations of the bi-stable molecular quantum dots are fullerenes, especially
C60, and mixed-valence compounds.Comment: 5 pages, 1 figure. (v2) Figure updated to compare the current
hysteresis for degeneracies d=4 and d>>1 of the level in the dot, minor
corrections in the text. To appear in Phys. Rev.
Kirchhoff's Rule for Quantum Wires
In this article we formulate and discuss one particle quantum scattering
theory on an arbitrary finite graph with open ends and where we define the
Hamiltonian to be (minus) the Laplace operator with general boundary conditions
at the vertices. This results in a scattering theory with channels. The
corresponding on-shell S-matrix formed by the reflection and transmission
amplitudes for incoming plane waves of energy is explicitly given in
terms of the boundary conditions and the lengths of the internal lines. It is
shown to be unitary, which may be viewed as the quantum version of Kirchhoff's
law. We exhibit covariance and symmetry properties. It is symmetric if the
boundary conditions are real. Also there is a duality transformation on the set
of boundary conditions and the lengths of the internal lines such that the low
energy behaviour of one theory gives the high energy behaviour of the
transformed theory. Finally we provide a composition rule by which the on-shell
S-matrix of a graph is factorizable in terms of the S-matrices of its
subgraphs. All proofs only use known facts from the theory of self-adjoint
extensions, standard linear algebra, complex function theory and elementary
arguments from the theory of Hermitean symplectic forms.Comment: 40 page
Electron transport through dipyrimidinyl-diphenyl diblock molecular wire: protonation effect
Recently, rectifying direction inversion has been observed in
dipyrimidinyl-diphenyl (PMPH) diblock molecular wire [J. Am. Chem. Soc. (2005)
127, 10456], and a protonation mechanism was suggested to explain this
interesting phenomena. In this paper, we study the protonation effect on
transport properties of PMPH molecule by first principles calculations. No
significant rectification is found for the pristine diblock molecular wire.
Protonation leads to conductance enhancement and rectification. However, for
all considered junctions with rectifying effect, the preferential current
directions are samely from dipyrimidinyl side to diphenyl side. Effect of
molecule-electrode anchoring geometry is studied, and it is not responsible for
the discrepancy between experiment and theory.Comment: 17 pages, 8 figure
Driving current through single organic molecules
We investigate electronic transport through two types of conjugated
molecules. Mechanically controlled break-junctions are used to couple thiol
endgroups of single molecules to two gold electrodes. Current-voltage
characteristics (IVs) of the metal-molecule-metal system are observed. These
IVs reproduce the spatial symmetry of the molecules with respect to the
direction of current flow. We hereby unambigously detect an intrinsic property
of the molecule, and are able to distinguish the influence of both the molecule
and the contact to the metal electrodes on the transport properties of the
compound system.Comment: 4 pages, 5 figure
Current rectification by simple molecular quantum dots: an ab-initio study
We calculate a current rectification by molecules containing a conjugated
molecular group sandwiched between two saturated (insulating) molecular groups
of different length (molecular quantum dot) using an ab-initio non-equilibrium
Green's function method. In particular, we study S-(CH2)m-C10H6-(CH2)n-S
dithiol with Naphthalene as a conjugated central group. The rectification
current ratio ~35 has been observed at m = 2 and n = 10, due to resonant
tunneling through the molecular orbital (MO) closest to the electrode Fermi
level (lowest unoccupied MO in the present case). The rectification is limited
by interference of other conducting orbitals, but can be improved by e.g.
adding an electron withdrawing group to the naphthalene.Comment: 8 pages, 9 figure
Quantum transport through STM-lifted single PTCDA molecules
Using a scanning tunneling microscope we have measured the quantum
conductance through a PTCDA molecule for different configurations of the
tip-molecule-surface junction. A peculiar conductance resonance arises at the
Fermi level for certain tip to surface distances. We have relaxed the molecular
junction coordinates and calculated transport by means of the Landauer/Keldysh
approach. The zero bias transmission calculated for fixed tip positions in
lateral dimensions but different tip substrate distances show a clear shift and
sharpening of the molecular chemisorption level on increasing the STM-surface
distance, in agreement with experiment.Comment: accepted for publication in Applied Physics
Molecular Wires Acting as Coherent Quantum Ratchets
The effect of laser fields on the electron transport through a molecular wire
being weakly coupled to two leads is investigated. The molecular wire acts as a
coherent quantum ratchet if the molecule is composed of periodically arranged,
asymmetric chemical groups. This setup presents a quantum rectifier with a
finite dc-response in the absence of a static bias. The nonlinear current is
evaluated in closed form within the Floquet basis of the isolated, driven wire.
The current response reveals multiple current reversals together with a
nonlinear dependence (reflecting avoided quasi-energy crossings) on both, the
amplitude and the frequency of the laser field. The current saturates for long
wires at a nonzero value, while it may change sign upon decreasing its length.Comment: 4 pages, 4 figures, RevTeX
- …
