79 research outputs found

    Endoscopic capacity in West Africa.

    Get PDF
    Background: Levels of endoscopic demand and capacity in West Africa are unclear. Objectives: This paper aims to: 1. describe the current labor and endoscopic capacity, 2. quantify the impact of a mixed-methods endoscopy course on healthcare professionals in West Africa, and 3. quantify the types of diagnoses encountered. Methods: In a three-day course, healthcare professionals were surveyed on endoscopic resources and capacity and were taught through active observation of live cases, case discussion, simulator experience and didactics. Before and after didactics, multiplechoice exams as well as questionnaires were administered to assess for course efficacy. Also, a case series of 23 patients needing upper GI endoscopy was done. Results: In surveying physicians, less than half had resources to perform an EGD and none could perform an ERCP, while waiting time for emergency endoscopy in urban populations was at least one day. In assessing improvement in medical knowledge among participants after didactics, objective data paired with subjective responses was more useful than either alone. Of 23 patients who received endoscopy, 7 required endoscopic intervention with 6 having gastric or esophageal varices. Currently the endoscopic capacity in West Africa is not sufficient. A formal GI course with simulation and didactics improves gastrointestinal knowledge amongst participants

    Classical Flt3L-dependent dendritic cells control immunity to protein vaccine

    Get PDF
    DCs are critical for initiating immunity. The current paradigm in vaccine biology is that DCs migrating from peripheral tissue and classical lymphoid-resident DCs (cDCs) cooperate in the draining LNs to initiate priming and proliferation of T cells. Here, we observe subcutaneous immunity is Fms-like tyrosine kinase 3 ligand (Flt3L) dependent. Flt3L is rapidly secreted after immunization; Flt3 deletion reduces T cell responses by 50%. Flt3L enhances global T cell and humoral immunity as well as both the numbers and antigen capture capacity of migratory DCs (migDCs) and LN-resident cDCs. Surprisingly, however, we find immunity is controlled by cDCs and actively tempered in vivo by migDCs. Deletion of Langerin+ DC or blockade of DC migration improves immunity. Consistent with an immune-regulatory role, transcriptomic analyses reveals different skin migDC subsets in both mouse and human cluster together, and share immune-suppressing gene expression and regulatory pathways. These data reveal that protective immunity to protein vaccines is controlled by Flt3L-dependent, LN-resident cDCs.</jats:p

    Aging diminishes the resistance of AO rats to EAE: putative role of enhanced generation of GM-CSF Expressing CD4+T cells in aged rats

    Get PDF
    Background: Aging influences immune response and susceptibility to EAE in a strain specific manner. The study was designed to examine influence of aging on EAE induction in Albino Oxford (AO) rats. Results: Differently from 3-month-old (young) rats, which were resistant to EAE induction, the majority of aged (24-26-month-old) rats developed mild chronic form of EAE. On 16th day post-immunization, when in aged rats the neurological deficit reached plateau, more mononuclear cells, including CD4+ T lymphocytes was retrieved from spinal cord of aged than young rats. The frequencies of IL-17+ and GM-CSF+ cells within spinal cord infiltrating CD4+ lymphocytes were greater in aged rats. To their increased frequency contributed the expansion of GM-CSF + IL-17 + IFN-gamma+ cells, which are highly pathogenic in mice. The expression of the cytokines (IL-1 beta and IL-23/p19) driving GM-CSF + IL-17 + IFN-gamma + cell differentiation in mice was also augmented in aged rat spinal cord mononuclear cells. Additionally, in aged rat spinal cord the expansion of GM-CSF + IL-17-IFN-gamma- CD4+ T lymphocytes was found. Consistently, the expression of mRNAs for IL-3, the cytokine exhibiting the same expression pattern as GM-CSF, and IL-7, the cytokine driving differentiation of GM-CSF + IL-17-IFN-gamma- CD4 + lymphocytes in mice, was upregulated in aged rat spinal cord mononuclear cells, and the tissue, respectively. This was in accordance with the enhanced generation of the brain antigen-specific GM-CSF+ CD4+ lymphocytes in aged rat draining lymph nodes, as suggested by (i) the higher frequency of GM-CSF+ cells (reflecting the expansion of IL-17-IFN-gamma- cells) within their CD4+ lymphocytes and (ii) the upregulated GM-CSF and IL-3 mRNA expression in fresh CD4+ lymphocytes and MBP-stimulated draining lymph node cells and IL-7 mRNA in lymph node tissue from aged rats. In agreement with the upregulated GM-CSF expression in aged rats, strikingly more CD11b + CD45(int) (activated microglia) and CD45(hi) (mainly proinflammatory dendritic cells and macrophages) cells was retrieved from aged than young rat spinal cord. Besides, expression of mRNA for SOCS1, a negative regulator of proinflammatory cytokine expression in innate immunity cells, was downregulated in aged rat spinal cord mononuclear cells. Conclusions: The study revealed that aging may overcome genetic resistance to EAE, and indicated the cellular and molecular mechanisms contributing to this phenomenon in AO rats

    The true face of migratory DCs

    No full text

    Id1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation

    Get PDF
    A central mechanism of tumour progression and metastasis involves the generation of an immunosuppressive 'macroenvironment' mediated in part through tumour-secreted factors. Here we demonstrate that upregulation of the Inhibitor of Differentiation 1 (Id1), in response to tumour-derived factors, such as TGFβ, is responsible for the switch from dendritic cell (DC) differentiation to myeloid-derived suppressor cell expansion during tumour progression. Genetic inactivation of Id1 largely corrects the myeloid imbalance, whereas Id1 overexpression in the absence of tumour-derived factors re-creates it. Id1 overexpression leads to systemic immunosuppression by downregulation of key molecules involved in DC differentiation and suppression of CD8 T-cell proliferation, thus promoting primary tumour growth and metastatic progression. Furthermore, advanced melanoma patients have increased plasma TGFβ levels and express higher levels of ID1 in myeloid peripheral blood cells. This study reveals a critical role for Id1 in suppressing the anti-tumour immune response during tumour progression and metastasis.We thank the members of our laboratories for their helpful discussions. We thank Dr. Sergei Rudchenko and Mihaela Barbu-Stevanovic at the Hospital for Special Surgery Fannie E. Rippel Foundation Flow Cytometry Core Facility for expert cell sorting. Our work was supported by grants from the UK-US Fulbright Commission (M.P.), the Garrett B. Smith Foundation (M.P.), 5th District AHEPA Cancer Research Foundation (M.P. and D.L.), the Children's Cancer and Blood Foundation (D.L.), The Hartwell Foundation (D.L.), The Manning Foundation (D.L.), Pediatric Oncology Experimental Therapeutics Investigator's Consortium (D.L.), Stavros S. Niarchos Foundation (D.L.), Champalimaud Foundation (D.L.), The Nancy C. and Daniel P. Paduano Foundation (D.L. and H.P.), The Mary Kay Foundation (D.L.), The Malcolm Hewitt Wiener Foundation (D.L.), National Foundation for Cancer Research (D.L.), Susan G. Komen for the Cure (D.L.), Luso-American Development Foundation (M.d.R.A.), American Portuguese Biomedical Research Fund (M.d.R.A.) and D.L. Fundacao para a Ciencia e a Tecnologia (D.L.), Beth Tortolani Foundation (D.L. and J.B.) and Theodore A Rapp Foundation (D.L.).S
    corecore