108 research outputs found

    Cultural and morphological studies on Ponnampet leaf and neck blast isolates of Magnaporthe grisea (Herbert) barr on rice (Oryza sativa L.)

    Get PDF
    The study was carried out to standardize the optimal growth, sporulation and production of perfect stage of pathogen on different media. Among different media used such as Potato dextrose Agar (PDA), Oat meal Agar, Ragi flour agar, yeast extract + 2% soluble starch, Host extract + 2% soluble sucrose agar, Potato dextrose agar + Biotin + Thiamine and Rice flour agar, Oat meal agar and potato dextrose agar was found to be best media for radial growth and sporulation of M. grisea. Maximum conidia length (9.46?m) and breadth (7.36?m) was recorded in Oat meal agar followed by Potato dextrose agar and least conidia length (6.15 ?m) and breadth (5.11 ?m) was recorded in ragi flour media after 20 days of inoculation. Conidial size varied in leaf and neck blast isolates, the maximum mean colony diameter of 88.00mm and 89.16mm in neck and leaf blast was recorded in Oat meal agar respectively. The maximum sporulation mean index was observed in Oat Meal agar of 3.15 ?m in leaf and 3.20 ?m in neck blast was recorded. The best growth of the pathogen was recorded at optimum pH range from 6.0 - 7.0 and temperature of 27oC. Therefore oat meal agar media was found to be best among all the media used for growth, sporulation, conidial size and colony characters of M. grisea

    Design and testing of a textile EMG sensor for prosthetic control

    Get PDF
    Nowadays, Electromyography (EMG) signals generated by the amputee’s residual limbs are widely used for the control of myoelectric prostheses, usually with the aid of pattern-recognition algorithms. Since myoelectric prostheses are wearable medical devices, the sensors that integrate them should be appropriate for the users’ daily life, meeting the requirements of lightness, flexibility, greater motion identification, and skin adaptability. Therefore, this study aims to design and test an EMG sensor for prosthetic control, focusing on aspects such as adjustability, lightness, precise and constant signal acquisition; and replacing the conventional components of an EMG sensor with textile materials. The proposed sensor was made with Shieldex Technik-tex P130 + B conductive knitted fabric, with 99% pure silver plating. EMG data acquisition was performed twice on three volunteers: one with the textile sensor, and other with a commercial sensor used in prosthetic applications. Overall, the textile and the commercial sensor presented total average Signal-to-Noise Ratio (SNR) values of 10.24 ± 5.45 dB and 11.74 ± 8.64 dB, respectively. The authors consider that the obtained results are promising and leave room for further improvements in future work, such as designing strategies to deal with known sources of noise contamination and to increase the adhesion to the skin. In sum, the results presented in this paper indicate that, with the appropriate improvements, the proposed textile sensor may have the potential of being used for myoelectric prosthetic control, which can be a more ergonomic and accessible alternative to the sensors that are currently used for controlling these devices.This work is financed by Project “Deus ex Machina”, NORTE-01-0145-FEDER-000026, funded by CCDRN, through Sistema de Apoio à Investigação Científica e Tecnológica (Projetos Estruturados I&D&I) of Programa Operacional Regional do Norte, from Portugal 2020 and by Project UID/CTM/00264/2019 of 2C2T –Centro de Ciência e TecnologiaTêxtil, funded by National Founds through FCT/MCTES

    Interaction of miltefosine with microcavity supported lipid membrane: biophysical insights from electrochemical impedance spectroscopy

    Get PDF
    Miltefosine an alkylphosphocholine analogue, is the only drug taken orally for the treatment of leishmaniasis-a parasitic disease caused by sandflies. Although it is believed that Miltefosine exerts its activity by acting at the lipid membrane, detailed understanding of the interaction of this drug with eukaryotic membranes is still lacking. Herein, we exploit microcavity pore suspended lipid bilayers (MSLBs) as a biomimetic platform in combination with a highly sensitive label-free electrochemical impedance spectroscopy (EIS) technique to gain biophysical insight into the interaction of Miltefosine with host cell membrane as a function of lipid membranes composition. Four membrane compositions with increasing complexity were evaluated; DOPC, DOPC:Chol (75:25), domain forming DOPC:SM:Chol (40:40:20) and mammalian plasma membrane (MPM) mimetic DOPC:DOPE:Chol:SM:DOPS (32:25:20:15:8) and used to study the interaction of Miltefosine in a concentration-dependent manner using EIS. The membrane resistance changes in response to Miltefosine were modelled by an empirical Langmuir isotherm binding model to provide estimates of binding saturation and equilibrium association constant. Miltefosine was found to have greatest impact on electrochemical properties of the simpler membrane systems; DOPC and DOPC:Chol, where these membranes were found to be more susceptible to membrane thinning, attributed to strong permeation/penetration of the drug whilst, compositions that included both Chol and SM, expected to contain large liquid-ordered domains exhibited weaker changes to membrane resistance but strongest drug association. In contrast, at the MPM membrane, Miltefosine exerts weakest association, which is tentatively attributed to electrostatic effects from the anionic DOPS but some membrane thinning is observed reflected in change in resistance and capacitance values attributed to some weak permeation

    Modeling of Facial Wrinkles for Applications in Computer Vision

    Get PDF
    International audienceAnalysis and modeling of aging human faces have been extensively studied in the past decade for applications in computer vision such as age estimation, age progression and face recognition across aging. Most of this research work is based on facial appearance and facial features such as face shape, geometry, location of landmarks and patch-based texture features. Despite the recent availability of higher resolution, high quality facial images, we do not find much work on the image analysis of local facial features such as wrinkles specifically. For the most part, modeling of facial skin texture, fine lines and wrinkles has been a focus in computer graphics research for photo-realistic rendering applications. In computer vision, very few aging related applications focus on such facial features. Where several survey papers can be found on facial aging analysis in computer vision, this chapter focuses specifically on the analysis of facial wrinkles in the context of several applications. Facial wrinkles can be categorized as subtle discontinuities or cracks in surrounding inhomogeneous skin texture and pose challenges to being detected/localized in images. First, we review commonly used image features to capture the intensity gradients caused by facial wrinkles and then present research in modeling and analysis of facial wrinkles as aging texture or curvilinear objects for different applications. The reviewed applications include localization or detection of wrinkles in facial images , incorporation of wrinkles for more realistic age progression, analysis for age estimation and inpainting/removal of wrinkles for facial retouching

    Daksha: On Alert for High Energy Transients

    Full text link
    We present Daksha, a proposed high energy transients mission for the study of electromagnetic counterparts of gravitational wave sources, and gamma ray bursts. Daksha will comprise of two satellites in low earth equatorial orbits, on opposite sides of earth. Each satellite will carry three types of detectors to cover the entire sky in an energy range from 1 keV to >1 MeV. Any transients detected on-board will be announced publicly within minutes of discovery. All photon data will be downloaded in ground station passes to obtain source positions, spectra, and light curves. In addition, Daksha will address a wide range of science cases including monitoring X-ray pulsars, studies of magnetars, solar flares, searches for fast radio burst counterparts, routine monitoring of bright persistent high energy sources, terrestrial gamma-ray flashes, and probing primordial black hole abundances through lensing. In this paper, we discuss the technical capabilities of Daksha, while the detailed science case is discussed in a separate paper.Comment: 9 pages, 3 figures, 1 table. Additional information about the mission is available at https://www.dakshasat.in

    Science with the Daksha High Energy Transients Mission

    Full text link
    We present the science case for the proposed Daksha high energy transients mission. Daksha will comprise of two satellites covering the entire sky from 1~keV to >1>1~MeV. The primary objectives of the mission are to discover and characterize electromagnetic counterparts to gravitational wave source; and to study Gamma Ray Bursts (GRBs). Daksha is a versatile all-sky monitor that can address a wide variety of science cases. With its broadband spectral response, high sensitivity, and continuous all-sky coverage, it will discover fainter and rarer sources than any other existing or proposed mission. Daksha can make key strides in GRB research with polarization studies, prompt soft spectroscopy, and fine time-resolved spectral studies. Daksha will provide continuous monitoring of X-ray pulsars. It will detect magnetar outbursts and high energy counterparts to Fast Radio Bursts. Using Earth occultation to measure source fluxes, the two satellites together will obtain daily flux measurements of bright hard X-ray sources including active galactic nuclei, X-ray binaries, and slow transients like Novae. Correlation studies between the two satellites can be used to probe primordial black holes through lensing. Daksha will have a set of detectors continuously pointing towards the Sun, providing excellent hard X-ray monitoring data. Closer to home, the high sensitivity and time resolution of Daksha can be leveraged for the characterization of Terrestrial Gamma-ray Flashes.Comment: 19 pages, 7 figures. Submitted to ApJ. More details about the mission at https://www.dakshasat.in

    Identification and in vitro evaluation of probiotic attributes of lactic acid bacteria isolated from fermented food sources

    Get PDF
    Consumer's vigilance towards health-promoting foods beyond only taste and nutrition has increased the recognition for probiotic products. In the present study, various parameters have been studied to define the probiotic properties of cultures isolated from different fermented products. Around 118 samples were selectively screened for antimicrobial compound (AMC) producing isolates by overlay-plate assay usingMicrococcus luteusATCC9341. Among 134 zone producing isolates, 48 cultures showing Gram-positive, catalase negative, non-spore forming and non-motile rods and cocci were selected. Subsequently, 18 strains were chosen based on non-hemolytic, absence of biogenic amine production, gelatinase and lecithinase negative trait for safer isolates. These were identified by biochemical assays and then subjected to RAPD-PCR. The selected cultures DB-1aa, DB-b2-15b, Cu2-PM7, Cu3-PM8 and IB-pM15 were identified by 16S rDNA sequencing asEnterococcus durans, Enterococcus faecium, Lactobacillus plantarum, and twoLactobacillus fermentum, respectively. Several in vitro experiments were carried out including acid and bile tolerance, survival under simulated gastrointestinal condition, adhesion assay to evaluate the probiotic potential of the isolates. In addition, the isolates were studied for competent properties such as antibacterial, antioxidant activity, and enzyme production for their functional application. The results of the study prove the efficiency of selected isolates as potential probiotic cultures and hence can be recommended for application in any functional food formulations
    corecore