3,685 research outputs found
Spin Polaron Effective Magnetic Model for La_{0.5}Ca_{0.5}MnO_3
The conventional paradigm of charge order for La_{1-x}Ca_xMnO_3 for x=0.5 has
been challenged recently by a Zener polaron picture emerging from experiments
and theoretical calculations. The effective low energy Hamiltonian for the
magnetic degrees of freedom has been found to be a cubic Heisenberg model, with
ferromagnetic nearest neighbor and frustrating antiferromagnetic next nearest
neighbor interactions in the planes, and antiferromagnetic interaction between
planes. With linear spin wave theory and diagonalization of small clusters up
to 27 sites we find that the behavior of the model interpolates between the A
and CE-type magnetic structures when a frustrating intraplanar interaction is
tuned. The values of the interactions calculated by ab initio methods indicate
a possible non-bipartite picture of polaron ordering differing from the
conventional one.Comment: 21 pages and 8 figures (included), Late
The Antiferromagnetic Heisenberg Model on Fullerene-Type Symmetry Clusters
The nearest neighbor antiferromagnetic Heisenberg model is
considered for spins sitting on the vertices of clusters with the connectivity
of fullerene molecules and a number of sites ranging from 24 to 32. Using
the permutational and spin inversion symmetries of the Hamiltonian the low
energy spectrum is calculated for all the irreducible representations of the
symmetry group of each cluster. Frustration and connectivity result in
non-trivial low energy properties, with the lowest excited states being
singlets except for . Same hexagon and same pentagon correlations are the
most effective in the minimization of the energy, with the
symmetry cluster having an unusually strong singlet intra-pentagon correlation.
The magnetization in a field shows no discontinuities unlike the icosahedral
fullerene clusters, but only plateaux with the most pronounced for
. The spatial symmetry as well as the connectivity of the clusters appear
to be important for the determination of their magnetic properties.Comment: Extended to include low energy spectra, correlation functions and
magnetization data of clusters up to 32 site
Affine T-varieties of complexity one and locally nilpotent derivations
Let X=spec A be a normal affine variety over an algebraically closed field k
of characteristic 0 endowed with an effective action of a torus T of dimension
n. Let also D be a homogeneous locally nilpotent derivation on the normal
affine Z^n-graded domain A, so that D generates a k_+-action on X that is
normalized by the T-action. We provide a complete classification of pairs (X,D)
in two cases: for toric varieties (n=\dim X) and in the case where n=\dim X-1.
This generalizes previously known results for surfaces due to Flenner and
Zaidenberg. As an application we compute the homogeneous Makar-Limanov
invariant of such varieties. In particular we exhibit a family of non-rational
varieties with trivial Makar-Limanov invariant.Comment: 31 pages. Minor changes in the structure. Fixed some typo
Converging Technologies - Shaping the Future of European Societies
The European Commission and Member States are called upon to recognise the novel potential of Converging Technologies (CTs) to advance the Lisbon Agenda. Wise investment in CTs stimulates science and technology research, strengthens economic competitiveness, and addresses the needs of European societies and their citizens. Preparatory action should be taken to implement CT as a thematic research priority, to develop Converging Technologies for the European Knowledge Society (CTEKS) as a specifically European approach to CTs, and to establish a CTEKS research communit
On the classification of Kahler-Ricci solitons on Gorenstein del Pezzo surfaces
We give a classification of all pairs (X,v) of Gorenstein del Pezzo surfaces
X and vector fields v which are K-stable in the sense of Berman-Nystrom and
therefore are expected to admit a Kahler-Ricci solition. Moreover, we provide
some new examples of Fano threefolds admitting a Kahler-Ricci soliton.Comment: 21 pages, ancillary files containing calculations in SageMath; minor
correction
Irreducible Representations of Diperiodic Groups
The irreducible representations of all of the 80 diperiodic groups, being the
symmetries of the systems translationally periodical in two directions, are
calculated. To this end, each of these groups is factorized as the product of a
generalized translational group and an axial point group. The results are
presented in the form of the tables, containing the matrices of the irreducible
representations of the generators of the groups. General properties and some
physical applications (degeneracy and topology of the energy bands, selection
rules, etc.) are discussed.Comment: 30 pages, 5 figures, 28 tables, 18 refs, LaTex2.0
New Langevin and Gradient Thermostats for Rigid Body Dynamics
We introduce two new thermostats, one of Langevin type and one of gradient
(Brownian) type, for rigid body dynamics. We formulate rotation using the
quaternion representation of angular coordinates; both thermostats preserve the
unit length of quaternions. The Langevin thermostat also ensures that the
conjugate angular momenta stay within the tangent space of the quaternion
coordinates, as required by the Hamiltonian dynamics of rigid bodies. We have
constructed three geometric numerical integrators for the Langevin thermostat
and one for the gradient thermostat. The numerical integrators reflect key
properties of the thermostats themselves. Namely, they all preserve the unit
length of quaternions, automatically, without the need of a projection onto the
unit sphere. The Langevin integrators also ensure that the angular momenta
remain within the tangent space of the quaternion coordinates. The Langevin
integrators are quasi-symplectic and of weak order two. The numerical method
for the gradient thermostat is of weak order one. Its construction exploits
ideas of Lie-group type integrators for differential equations on manifolds. We
numerically compare the discretization errors of the Langevin integrators, as
well as the efficiency of the gradient integrator compared to the Langevin ones
when used in the simulation of rigid TIP4P water model with smoothly truncated
electrostatic interactions. We observe that the gradient integrator is
computationally less efficient than the Langevin integrators. We also compare
the relative accuracy of the Langevin integrators in evaluating various static
quantities and give recommendations as to the choice of an appropriate
integrator.Comment: 16 pages, 4 figure
Which solar neutrino data favour the LMA solution?
Assuming neutrino oscillations, global analyses of solar data find that the
LOW solution is significantly disfavoured, leaving LMA as the best solution.
But the preference for LMA rests on three weak hints: the spectrum of earth
matter effects (Super-Kamiokande sees an overall day/night asymmetry only at 1
sigma), the Cl rate (but LMA and LOW predictions are both above the measured
value), the Ga rate (newer data decrease towards the LOW predictions both in
GNO and SAGE). Only new data will tell us if LMA is the true solution.Comment: 4 pages, 2 figure
- …