1,274 research outputs found
Distilling entanglement from cascades with partial "Which Path" ambiguity
We develop a framework to calculate the density matrix of a pair of photons
emitted in a decay cascade with partial "which path" ambiguity. We describe an
appropriate entanglement distillation scheme which works also for certain
random cascades. The qualitative features of the distilled entanglement are
presented in a two dimensional "phase diagram". The theory is applied to the
quantum tomography of the decay cascade of a biexciton in a semiconductor
quantum dot. Agreement with experiment is obtained
Calculations of He+p Elastic Cross Sections Using Microscopic Optical Potential
An approach to calculate microscopic optical potential (OP) with the real
part obtained by a folding procedure and with the imaginary part inherent in
the high-energy approximation (HEA) is applied to study the He+p elastic
scattering data at energies of tens of MeV/nucleon (MeV/N). The neutron and
proton density distributions obtained in different models for He are
utilized in the calculations of the differential cross sections. The role of
the spin-orbit potential is studied. Comparison of the calculations with the
available experimental data on the elastic scattering differential cross
sections at beam energies of 15.7, 26.25, 32, 66 and 73 MeV/N is performed. The
problem of the ambiguities of the depths of each component of the optical
potential is considered by means of the imposed physical criterion related to
the known behavior of the volume integrals as functions of the incident energy.
It is shown also that the role of the surface absorption is rather important,
in particular for the lowest incident energies (e.g., 15.7 and 26.25
MeV/nucleon).Comment: 11 pages, 7 figures, accepted for publication in Physical Review
Polarization sensitive spectroscopy of charged Quantum Dots
We present an experimental and theoretical study of the polarized
photoluminescence spectrum of single semiconductor quantum dots in various
charge states. We compare our high resolution polarization sensitive spectral
measurements with a new many-carrier theoretical model, which was developed for
this purpose. The model considers both the isotropic and anisotropic exchange
interactions between all participating electron-hole pairs. With this addition,
we calculate both the energies and polarizations of all optical transitions
between collective, quantum dot confined charge carrier states. We succeed in
identifying most of the measured spectral lines. In particular, the lines
resulting from singly-, doubly- and triply- negatively charged excitons and
biexcitons. We demonstrate that lines emanating from evenly charged states are
linearly polarized. Their polarization direction does not necessarily coincide
with the traditional crystallographic direction. It depends on the shells of
the single carriers, which participate in the recombination process.Comment: 11 pages, 9 figures. Revised versio
Photonic quantum state transfer between a cold atomic gas and a crystal
Interfacing fundamentally different quantum systems is key to build future
hybrid quantum networks. Such heterogeneous networks offer superior
capabilities compared to their homogeneous counterparts as they merge
individual advantages of disparate quantum nodes in a single network
architecture. However, only very few investigations on optical
hybrid-interconnections have been carried out due to the high fundamental and
technological challenges, which involve e.g. wavelength and bandwidth matching
of the interfacing photons. Here we report the first optical quantum
interconnection between two disparate matter quantum systems with photon
storage capabilities. We show that a quantum state can be faithfully
transferred between a cold atomic ensemble and a rare-earth doped crystal via a
single photon at telecommunication wavelength, using cascaded quantum frequency
conversion. We first demonstrate that quantum correlations between a photon and
a single collective spin excitation in the cold atomic ensemble can be
transferred onto the solid-state system. We also show that single-photon
time-bin qubits generated in the cold atomic ensemble can be converted, stored
and retrieved from the crystal with a conditional qubit fidelity of more than
. Our results open prospects to optically connect quantum nodes with
different capabilities and represent an important step towards the realization
of large-scale hybrid quantum networks
Three-body correlations in direct reactions: Example of Be populated in reaction
The Be continuum states were populated in the charge-exchange reaction
H(Li,Be) collecting very high statistics data ( events) on the three-body ++ correlations. The
Be excitation energy region below MeV is considered, where the
data are dominated by contributions from the and states. It is
demonstrated how the high-statistics few-body correlation data can be used to
extract detailed information on the reaction mechanism. Such a derivation is
based on the fact that highly spin-aligned states are typically populated in
the direct reactions.Comment: submitted to Physical Review
Calculations of He+p elastic scattering cross sections using folding approach and high-energy approximation for the optical potential
Calculations of microscopic optical potentials (OP's) (their real and
imaginary parts) are performed to analyze the He+p elastic scattering data
at a few tens of MeV/nucleon (MeV/N). The OP's and the cross sections are
calculated using three model densities of He. Effects of the regularization
of the NN forces and their dependence on nuclear density are investigated.
Also, the role of the spin-orbit terms and of the non-linearity in the
calculations of the OP's, as well as effects of their renormalization are
studied. The sensitivity of the cross sections to the nuclear densities was
tested and one of them that gives a better agreement with the data was chosen.Comment: 13 pages, 11 figures, to be published in Eur. Phys. J.
Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves
Individual self-assembled Quantum Dots and Quantum Posts are studied under
the influence of a surface acoustic wave. In optical experiments we observe an
acoustically induced switching of the occupancy of the nanostructures along
with an overall increase of the emission intensity. For Quantum Posts,
switching occurs continuously from predominantely charged excitons (dissimilar
number of electrons and holes) to neutral excitons (same number of electrons
and holes) and is independent on whether the surface acoustic wave amplitude is
increased or decreased. For quantum dots, switching is non-monotonic and shows
a pronounced hysteresis on the amplitude sweep direction. Moreover, emission of
positively charged and neutral excitons is observed at high surface acoustic
wave amplitudes. These findings are explained by carrier trapping and
localization in the thin and disordered two-dimensional wetting layer on top of
which Quantum Dots nucleate. This limitation can be overcome for Quantum Posts
where acoustically induced charge transport is highly efficient in a wide
lateral Matrix-Quantum Well.Comment: 11 pages, 5 figure
Charge and matter distributions and form factors of light, medium and heavy neutron-rich nuclei
Results of charge form factors calculations for several unstable neutron-rich
isotopes of light, medium and heavy nuclei (He, Li, Ni, Kr, Sn) are presented
and compared to those of stable isotopes in the same isotopic chain. For the
lighter isotopes (He and Li) the proton and neutron densities are obtained
within a microscopic large-scale shell-model, while for heavier ones Ni, Kr and
Sn the densities are calculated in deformed self-consistent mean-field Skyrme
HF+BCS method. We also compare proton densities to matter densities together
with their rms radii and diffuseness parameter values. Whenever possible
comparison of form factors, densities and rms radii with available experimental
data is also performed. Calculations of form factors are carried out both in
plane wave Born approximation (PWBA) and in distorted wave Born approximation
(DWBA). These form factors are suggested as predictions for the future
experiments on the electron-radioactive beam colliders where the effect of the
neutron halo or skin on the proton distributions in exotic nuclei is planned to
be studied and thereby the various theoretical models of exotic nuclei will be
tested.Comment: 26 pages, 11 figures, 3 tables, accepted for publication in Phys.
Rev.
- …
