65 research outputs found

    Asymptotics and quantization for a mean-field equation of higher order

    Full text link
    Given a regular bounded domain Ω⊂R2m\Omega\subset\R{2m}, we describe the limiting behavior of sequences of solutions to the mean field equation of order 2m2m, m≄1m\geq 1, (−Δ)mu=ρe2mu∫Ωe2mudxinΩ,(-\Delta)^m u=\rho \frac{e^{2mu}}{\int_\Omega e^{2mu}dx}\quad\text{in}\Omega, under the Dirichlet boundary condition and the bound 0<ρ≀C0<\rho\leq C. We emphasize the connection with the problem of prescribing the QQ-curvature.Comment: 21 page

    A theory of L1L^1-dissipative solvers for scalar conservation laws with discontinuous flux

    Full text link
    We propose a general framework for the study of L1L^1 contractive semigroups of solutions to conservation laws with discontinuous flux. Developing the ideas of a number of preceding works we claim that the whole admissibility issue is reduced to the selection of a family of "elementary solutions", which are certain piecewise constant stationary weak solutions. We refer to such a family as a "germ". It is well known that (CL) admits many different L1L^1 contractive semigroups, some of which reflects different physical applications. We revisit a number of the existing admissibility (or entropy) conditions and identify the germs that underly these conditions. We devote specific attention to the anishing viscosity" germ, which is a way to express the "Γ\Gamma-condition" of Diehl. For any given germ, we formulate "germ-based" admissibility conditions in the form of a trace condition on the flux discontinuity line x=0x=0 (in the spirit of Vol'pert) and in the form of a family of global entropy inequalities (following Kruzhkov and Carrillo). We characterize those germs that lead to the L1L^1-contraction property for the associated admissible solutions. Our approach offers a streamlined and unifying perspective on many of the known entropy conditions, making it possible to recover earlier uniqueness results under weaker conditions than before, and to provide new results for other less studied problems. Several strategies for proving the existence of admissible solutions are discussed, and existence results are given for fluxes satisfying some additional conditions. These are based on convergence results either for the vanishing viscosity method (with standard viscosity or with specific viscosities "adapted" to the choice of a germ), or for specific germ-adapted finite volume schemes

    Estimates for the Sobolev trace constant with critical exponent and applications

    Full text link
    In this paper we find estimates for the optimal constant in the critical Sobolev trace inequality S\|u\|^p_{L^{p_*}(\partial\Omega) \hookrightarrow \|u\|^p_{W^{1,p}(\Omega)} that are independent of Ω\Omega. This estimates generalized those of [3] for general pp. Here p∗:=p(N−1)/(N−p)p_* := p(N-1)/(N-p) is the critical exponent for the immersion and NN is the space dimension. Then we apply our results first to prove existence of positive solutions to a nonlinear elliptic problem with a nonlinear boundary condition with critical growth on the boundary, generalizing the results of [16]. Finally, we study an optimal design problem with critical exponent.Comment: 22 pages, submitte

    Positive Least Energy Solutions and Phase Separation for Coupled Schrodinger Equations with Critical Exponent: Higher Dimensional Case

    Full text link
    We study the following nonlinear Schr\"{o}dinger system which is related to Bose-Einstein condensate: {displaymath} {cases}-\Delta u +\la_1 u = \mu_1 u^{2^\ast-1}+\beta u^{\frac{2^\ast}{2}-1}v^{\frac{2^\ast}{2}}, \quad x\in \Omega, -\Delta v +\la_2 v =\mu_2 v^{2^\ast-1}+\beta v^{\frac{2^\ast}{2}-1} u^{\frac{2^\ast}{2}}, \quad x\in \om, u\ge 0, v\ge 0 \,\,\hbox{in \om},\quad u=v=0 \,\,\hbox{on \partial\om}.{cases}{displaymath} Here \om\subset \R^N is a smooth bounded domain, 2∗:=2NN−22^\ast:=\frac{2N}{N-2} is the Sobolev critical exponent, -\la_1(\om)0 and ÎČ≠0\beta\neq 0, where \lambda_1(\om) is the first eigenvalue of −Δ-\Delta with the Dirichlet boundary condition. When \bb=0, this is just the well-known Brezis-Nirenberg problem. The special case N=4 was studied by the authors in (Arch. Ration. Mech. Anal. 205: 515-551, 2012). In this paper we consider {\it the higher dimensional case N≄5N\ge 5}. It is interesting that we can prove the existence of a positive least energy solution (u_\bb, v_\bb) {\it for any ÎČ≠0\beta\neq 0} (which can not hold in the special case N=4). We also study the limit behavior of (u_\bb, v_\bb) as ÎČ→−∞\beta\to -\infty and phase separation is expected. In particular, u_\bb-v_\bb will converge to {\it sign-changing solutions} of the Brezis-Nirenberg problem, provided N≄6N\ge 6. In case \la_1=\la_2, the classification of the least energy solutions is also studied. It turns out that some quite different phenomena appear comparing to the special case N=4.Comment: 48 pages. This is a revised version of arXiv:1209.2522v1 [math.AP

    On exact number of solutions at infinity for Ambrosetti-Prodi class of problems

    No full text
    This article does not have an abstract
    • 

    corecore