214 research outputs found

    Understanding the control of a vitamin B12 riboswitch

    Get PDF
    Within the life sciences switching mechanisms are pervasive at all levels, from molecules to cells and tissues. Their operation can be a key determinant of health or disease. Whilst the existence and importance of switches is widely acknowledged within the biological literature, many life scientists do not deal explicitly with the switching behaviour. Frequently, steady-state behaviour before and after switching is the primary focus. Here methods for analysis of switched systems from control engineering are applied to the modelling and analysis of a riboswitch. The model has been developed by studying the dynamics of the vitamin B12 riboswitch. The simulation results have been validated using in vivo experiments by checking the bacterial growth when using Escherichia coli and Salmonella enterica where the action of the vitamin B12 riboswitch is known to be a determinant of system behaviour. The paper first describes a simple model for the B12-riboswitch regulatory network in E. coli and applies the same analysis when changing the strain to S. enterica. Validation of the simulation results has been undertaken by linking the dynamics of the riboswitch to bacterial growth

    N -butyldeoxynojirimycin reduces growth and ganglioside content of experimental mouse brain tumours

    Get PDF
    Abnormalities in glycosphingolipid (GSL) biosynthesis have been implicated in the oncogenesis and malignancy of brain tumours. GSLs comprise the gangliosides and the neutral GSLs and are major components of the cell surface glycocalyx. N -butyldeoxynojirimycin (N B-DNJ) is an imino sugar that inhibits the glucosyltransferase catalysing the first step in GSL biosynthesis. The influence of N B-DNJ was studied on the growth and ganglioside composition of two 20-methylcholanthrene-induced experimental mouse brain tumours, EPEN and CT-2A, which were grown in vitro and in vivo. N B-DNJ (200 μM) inhibited the proliferation of the EPEN and CT-2A cells by 50%, but did not reduce cell viability. The drug, administered in the diet (2400 mg kg−1) to adult syngeneic C57BL/6 mice, reduced the growth and ganglioside content of subcutaneous and intracerebral EPEN and CT-2A tumours by at least 50% compared to the untreated controls. N B-DNJ treatment also shifted the relative distribution of tumour gangliosides in accordance with the depletion of metabolic substrates. Side effects of N B-DNJ treatment were generally mild and included reductions in body and spleen weights and intestinal distension. We conclude that N B-DNJ may inhibit tumour growth through an effect on ganglioside biosynthesis and may be useful as a new chemotherapy for brain tumours. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Exploration of 2-deoxy-D-ribose and 17β-Estradiol as alternatives to exogenous VEGF to promote angiogenesis in tissue-engineered constructs

    Get PDF
    Aim: In this study, we explored the angiogenic potential and proangiogenic concentration ranges of 2-deoxy-D-ribose (2dDR) and 17β-Estradiol (E2) in comparison with VEGF. The 2dDR and E2 were then loaded into tissue engineering (TE) scaffolds to investigate their proangiogenic potential when released from fibers. Materials & methods:Ex ovo chick chorioallantoic membrane (CAM) assay was used to evaluate angiogenic activity of 2dDR and E2. Both factors were then introduced into scaffolds via electrospinning to assess their angiogenic potential when released from fibers. Results: Both factors were approximately 80% as potent as VEGF and showed a dose-dependent angiogenic response. The sustained release of both agents from the scaffolds stimulated neovascularization over 7 days in the chorioallantoic membrane assay. Conclusion: We conclude that both 2dDR and E2 provide attractive alternatives to VEGF for the functionalization of tissue engineering scaffolds to promote angiogenesis in vivo

    Absence of pathogenic mitochondrial DNA mutations in mouse brain tumors

    Get PDF
    BACKGROUND: Somatic mutations in the mitochondrial genome occur in numerous tumor types including brain tumors. These mutations are generally found in the hypervariable regions I and II of the displacement loop and unlikely alter mitochondrial function. Two hypervariable regions of mononucleotide repeats occur in the mouse mitochondrial genome, i.e., the origin of replication of the light strand (O(L)) and the Arg tRNA. METHODS: In this study we examined the entire mitochondrial genome in a series of chemically induced brain tumors in the C57BL/6J strain and spontaneous brain tumors in the VM mouse strain. The tumor mtDNA was compared to that of mtDNA in brain mitochondrial populations from the corresponding syngeneic mouse host strain. RESULTS: Direct sequencing revealed a few homoplasmic base pair insertions, deletions, and substitutions in the tumor cells mainly in regions of mononucleotide repeats. A heteroplasmic mutation in the 16srRNA gene was detected in a spontaneous metastatic VM brain tumor. CONCLUSION: None of the mutations were considered pathogenic, indicating that mtDNA somatic mutations do not likely contribute to the initiation or progression of these diverse mouse brain tumors

    A framework to guide planetary health education

    Get PDF
    People around the world are increasingly facing the pressing challenges of today's interconnected environmental, social, and health crises. The COVID-19 pandemic has been an important wake-up call reminding us that we need a healthy planet to ensure the health of all people. The emerging field of planetary health is a framework for understanding these interconnections and identifying solutions to the complex challenges confronting our civilization. Building on the unique role and responsibility of education institutions in shaping our futures, embedding planetary health education in curricula is an essential step to achieving the transformative change needed. Planetary health education across all levels and disciplines will equip and enable learners to drive transdisciplinary and mutually reinforcing actions to protect and restore planetary health and achieve the Sustainable Development Goals

    Temperature Dependence of the Dynamics of Portevin-Le Chatelier Effect in Al-2.5%Mg alloy

    Full text link
    Tensile tests were carried out by deforming polycrystalline samples of Al-2.5%Mg alloy at four different temperatures in an intermediate strain rate regime of 2x10-4s-1 to 2x10-3s-1. The Portevin-Le Chatelier (PLC) effect was observed throughout the strain rate and temperature region. The mean cumulative stress drop magnitude and the mean reloading time exhibit an increasing trend with temperature which is attributed to the enhanced solute diffusion at higher temperature. The observed stress-time series data were analyzed using the nonlinear dynamical methods. From the analyses, we could establish the presence of deterministic chaos in the PLC effect throughout the temperature regime. The dynamics goes to higher dimension at a sufficiently high temperature of 425K but the complexity of the dynamics is not affected by the temperature.Comment: 18 pages, 8 figures; accepted in Met. Mater. Trans.
    • …
    corecore