1,706 research outputs found

    Spontaneous periodic travelling waves in oscillatory systems with cross-diffusion

    Get PDF
    We identify a new type of pattern formation in spatially distributed active systems. We simulate one-dimensional two-component systems with predator-prey local interaction and pursuit-evasion taxis between the components. In a sufficiently large domain, spatially uniform oscillations in such systems are unstable with respect to small perturbations. This instability, through a transient regime appearing as spontanous focal sources, leads to establishment of periodic traveling waves. The traveling waves regime is established even if boundary conditions do not favor such solutions. The stable wavelength are within a range bounded both from above and from below, and this range does not coincide with instability bands of the spatially uniform oscillations.Comment: 7 pages, 4 figures, as accepted to Phys Rev E 2009/10/2

    The Clostridium difficile problem: A South African tertiary institution's prospective perspective

    Get PDF
    BACKGROUND AND OBJECTIVES: The aim of this study is to report the incidence of Clostridium difficile-associated disease (CDAD) in a tertiary-care hospital in South Africa and to identify risk factors, assess patient outcomes and determine the impact of the hypervirulent strain of the organism referred to as North American pulsed-field type 1 (NAP1). METHODS: Adults who presented with diarrhoea over a period of 15 months were prospectively evaluated for CDAD using stool toxin enzyme immunoassay (EIA). Positive specimens were evaluated by PCR. Patient demographics, laboratory parameters and outcomes were analysed. RESULTS: CDAD was diagnosed in 59 (9.2%) of 643 patients (median age 39 years, IQR 30 - 55). Thirty-four (58%) were female. Recent antibiotic exposure was reported in 39 (66%), 27 (46%) had been hospitalised within 3 months, and 14 (24%) had concomitant inflammatory bowel disease (IBD). Nineteen (32%) had community-acquired CDAD (CA-CDAD). The annual incidence of hospital-acquired CDAD (HA-CDAD) was 8.7 cases/10 000 hospitalisations. Two cases of the hypervirulent strain NAP1 were identified. Seven (12%) patients underwent colectomy (OR 6.83; 95% CI 2.41 - 19.3). On logistic regression, only antibiotic exposure independently predicted for CDAD (OR 2.9; 95% CI 1.6 - 5.1). Three (16%) cases of CA-CDAD reported antibiotic exposure (v. 90% of HA-CDAD, p<0.0001). Twelve (86%) patients had concomitant IBD (p<0.0001 v. HA-CDAD). CA-CDAD was significantly associated with antibiotic exposure (OR 0.04, 95% CI 0.01 - 0.24) and IBD (OR 9.6, 95% CI 1.15 - 79.8). CONCLUSION: The incidence of HA-CDAD in the South African setting is far lower than that reported in the West. While antibiotic use was a major risk factor for HA-CDAD, CA-CDAD was not associated with antibiotic therapy. Concurrent IBD was a predictor of CA-CDAD

    Labels for non-individuals

    Full text link
    Quasi-set theory is a first order theory without identity, which allows us to cope with non-individuals in a sense. A weaker equivalence relation called ``indistinguishability'' is an extension of identity in the sense that if xx is identical to yy then xx and yy are indistinguishable, although the reciprocal is not always valid. The interesting point is that quasi-set theory provides us a useful mathematical background for dealing with collections of indistinguishable elementary quantum particles. In the present paper, however, we show that even in quasi-set theory it is possible to label objects that are considered as non-individuals. We intend to prove that individuality has nothing to do with any labelling process at all, as suggested by some authors. We discuss the physical interpretation of our results.Comment: 11 pages, no figure

    Twirling Elastica: Kinks, Viscous Drag, and Torsional Stress

    Full text link
    Biological filaments such as DNA or bacterial flagella are typically curved in their natural states. To elucidate the interplay of viscous drag, twisting, and bending in the overdamped dynamics of such filaments, we compute the steady-state torsional stress and shape of a rotating rod with a kink. Drag deforms the rod, ultimately extending or folding it depending on the kink angle. For certain kink angles and kink locations, both states are possible at high rotation rates. The agreement between our macroscopic experiments and the theory is good, with no adjustable parameters.Comment: 4 pages, 4 figure

    The Viscous Nonlinear Dynamics of Twist and Writhe

    Get PDF
    Exploiting the "natural" frame of space curves, we formulate an intrinsic dynamics of twisted elastic filaments in viscous fluids. A pair of coupled nonlinear equations describing the temporal evolution of the filament's complex curvature and twist density embodies the dynamic interplay of twist and writhe. These are used to illustrate a novel nonlinear phenomenon: ``geometric untwisting" of open filaments, whereby twisting strains relax through a transient writhing instability without performing axial rotation. This may explain certain experimentally observed motions of fibers of the bacterium B. subtilis [N.H. Mendelson, et al., J. Bacteriol. 177, 7060 (1995)].Comment: 9 pages, 4 figure

    Effective Viscosity of Dilute Bacterial Suspensions: A Two-Dimensional Model

    Full text link
    Suspensions of self-propelled particles are studied in the framework of two-dimensional (2D) Stokesean hydrodynamics. A formula is obtained for the effective viscosity of such suspensions in the limit of small concentrations. This formula includes the two terms that are found in the 2D version of Einstein's classical result for passive suspensions. To this, the main result of the paper is added, an additional term due to self-propulsion which depends on the physical and geometric properties of the active suspension. This term explains the experimental observation of a decrease in effective viscosity in active suspensions.Comment: 15 pages, 3 figures, submitted to Physical Biolog

    Signs of low frequency dispersions in disordered binary dielectric mixtures (50-50)

    Full text link
    Dielectric relaxation in disordered dielectric mixtures are presented by emphasizing the interfacial polarization. The obtained results coincide with and cause confusion with those of the low frequency dispersion behavior. The considered systems are composed of two phases on two-dimensional square and triangular topological networks. We use the finite element method to calculate the effective dielectric permittivities of randomly generated structures. The dielectric relaxation phenomena together with the dielectric permittivity values at constant frequencies are investigated, and significant differences of the square and triangular topologies are observed. The frequency dependent properties of some of the generated structures are examined. We conclude that the topological disorder may lead to the normal or anomalous low frequency dispersion if the electrical properties of the phases are chosen properly, such that for ``slightly'' {\em reciprocal mixture}--when σ1σ2\sigma_1\gg\sigma_2, and ϵ1<ϵ2\epsilon_1<\epsilon_2--normal, and while for ``extreme'' {\em reciprocal mixture}--when σ1σ2\sigma_1\gg\sigma_2, and ϵ1ϵ2\epsilon_1\ll\epsilon_2--anomalous low frequency dispersions are obtained. Finally, comparison with experimental data indicates that one can obtain valuable information from simulations when the material properties of the constituents are not available and of importance.Comment: 13 pages, 7 figure

    Molecular elasticity and the geometric phase

    Full text link
    We present a method for solving the Worm Like Chain (WLC) model for twisting semiflexible polymers to any desired accuracy. We show that the WLC free energy is a periodic function of the applied twist with period 4 pi. We develop an analogy between WLC elasticity and the geometric phase of a spin half system. These analogies are used to predict elastic properties of twist-storing polymers. We graphically display the elastic response of a single molecule to an applied torque. This study is relevant to mechanical properties of biopolymers like DNA.Comment: five pages, one figure, revtex, revised in the light of referee's comments, to appear in PR

    Swift/XRT monitoring of five orbital cycles of LSI +61 303

    Full text link
    LSI +61 303 is one of the most interesting high-mass X-ray binaries owing to its spatially resolved radio emission and its TeV emission, generally attributed to non-thermal particles in an accretion-powered relativistic jet or in the termination shock of the relativistic wind of a young pulsar. Also, the nature of the compact object is still debated. Only LS 5039 and PSR B1259-63 (which hosts a non-accreting millisecond pulsar) have similar characteristics. We study the X-ray emission from LSI +61 303 covering both short-term and orbital variability. We also investigate the source spectral properties in the soft X-ray (0.3-10 keV) energy range. 25 snapshot observations of LSI +61 303 have been collected in 2006 with the XRT instrument on-board the Swift satellite over a period of four months, corresponding to about five orbital cycles. Since individual data sets have too few counts for a meaningful spectral analysis, we extracted a cumulative spectrum. The count rate folded at the orbital phase shows a clear modulation pattern at the 26.5 days period and suggests that the X-ray peak occurs around phase 0.65. Moreover, the X-ray emission appears to be variable on a timescale of ~1 ks. The cumulative spectrum is well described by an absorbed power-law model, with hydrogen column density Nh=(5.7+/-0.3)E+21 cm^-2 and photon index 1.78+/-0.05. No accretion disk signatures, such as an iron line, are found in the spectrum.Comment: Revised to match the A&A versio
    corecore