2,904 research outputs found
Influence of interface potential on the effective mass in Ge nanostructures
The role of the interface potential on the effective mass of charge carriers
is elucidated in this work. We develop a new theoretical formalism using a
spatially dependent effective mass that is related to the magnitude of the
interface potential. Using this formalism we studied Ge quantum dots (QDs)
formed by plasma enhanced chemical vapour deposition (PECVD) and co-sputtering
(sputter). These samples allowed us to isolate important consequences arising
from differences in the interface potential. We found that for a higher
interface potential, as in the case of PECVD QDs, there is a larger reduction
in the effective mass, which increases the confinement energy with respect to
the sputter sample. We further understood the action of O interface states by
comparing our results with Ge QDs grown by molecular beam epitaxy. It is found
that the O states can suppress the influence of the interface potential. From
our theoretical formalism we determine the length scale over which the
interface potential influences the effective mass
Affective iconic words benefit from additional soundâmeaning integration in the left amygdala
Recent studies have shown that a similarity between sound and meaning of a word (i.e., iconicity) can help more readily access the meaning of that word, but the neural mechanisms underlying this beneficial role of iconicity in semantic processing remain largely unknown. In an fMRI study, we focused on the affective domain and examined whether affective iconic words (e.g., high arousal in both sound and meaning) activate additional brain regions that integrate emotional information from different domains (i.e., sound and meaning). In line with our hypothesis, affective iconic words, compared to their nonâiconic counterparts, elicited additional BOLD responses in the left amygdala known for its role in multimodal representation of emotions. Functional connectivity analyses revealed that the observed amygdalar activity was modulated by an interaction of iconic condition and activations in two hubs representative for processing sound (left superior temporal gyrus) and meaning (left inferior frontal gyrus) of words. These results provide a neural explanation for the facilitative role of iconicity in language processing and indicate that language users are sensitive to the interaction between sound and meaning aspect of words, suggesting the existence of iconicity as a general property of human language
Geographic Variation in Health Care: The Role of Private Markets
health care, public sector, Medicare, insurance
Isoprene nitrates: preparation, separation, identification, yields, and atmospheric chemistry
Isoprene is an important atmospheric volatile organic compound involved in ozone production and NO<sub>x</sub> (NO+NO<sub>2</sub>) sequestration and transport. Isoprene reaction with OH in the presence of NO can form either isoprene hydroxy nitrates ("isoprene nitrates") or convert NO to NO<sub>2</sub> which can photolyze to form ozone. While it has been shown that isoprene nitrate production can represent an important sink for NO<sub>x</sub> in forest impacted environments, there is little experimental knowledge of the relative importance of the individual isoprene nitrate isomers, each of which has a different fate and reactivity. In this work, we have identified the 8 individual isomers and determined their total and individual production yields. The overall yield of isoprene nitrates at atmospheric pressure and 295 K was found to be 0.070(+0.025/â0.015). Three isomers, representing nitrates resulting from OH addition to a terminal carbon, represent 90% of the total IN yield. We also determined the ozone rate constants for three of the isomers, and have calculated their atmospheric lifetimes, which range from ~1â2 h, making their oxidation products likely more important as atmospheric organic nitrates and sinks for nitrogen
The Addition of Arachidin 1 or Arachidin 3 to Human Rotavirus-infected Cells Inhibits Viral Replication and Alters the Apoptotic Cell Death Pathway
Rotavirus (RV) infections are a leading cause of severe gastroenteritis in infants and children under the age of five. There are two vaccines available in the United States and one in India that can be administered early in childhood, however they only protect against specific strains1. From our previous work, both arachidin-1 (A1) and arachidin-3 (A3) from peanut (Arachis hypogaea) hairy root cultures significantly inhibit simian RV replication2,3,4. The purpose of this study was to determine if a human intestinal cell line, HT29.f8, infected with a human RV, Wa, was affected by A1 and A3. Cell viability assays were utilized to determine if A1 and A3 affect the HT29.f8 cells with/without RV infections. At eighteen hours post infection (hpi), supernatants from the RV-infected HT29.f8 cells with/without the arachidins were used in plaque forming assays to quantify and compare the amount of infectious RV particles that are produced during an infection. Transmission electron microscopy (TEM) was used to visualize cell ultrastructure and individual RV particles. Additionally, tunable resistive pulse sensing technology (TRPS) using the qNano system by IZON was employed to quantify and measure virus particle sizes, and display the size distribution of RV particles. Likewise, quantitative real time polymerase chain reactions (qRT-PCR) were performed to determine if A1 and A3 regulated cell death pathways in the HT29.f8 cell line. This data will guide our future studies to determine the antiviral mechanism(s) of action of A1 and A3
Recommended from our members
Our changing Sun
Stellar astronomy tells us much about the long-term evolution of our Sun while forensic evidence (for example, cosmic-ray products in ice cores) gives us indications of its fluctuations over the last millennium. However, such studies do not give us a sufficiently detailed understanding of solar change over the last century to allow us to detect and quantify any role that the Sun might have played in the observed rise in average surface temperatures on Earth. This paper describes recent research that has filled this gap by applying advances in our understanding of the effects and structure of the solar wind to historical data on the Earth's magnetic field
Role of Quantum Confinement in Luminescence Efficiency of Group IV Nanostructures
Experimental results obtained previously for the photoluminescence efficiency
(PL) of Ge quantum dots (QDs) are theoretically studied. A
- plot of PL versus QD diameter () resulted in an
identical slope for each Ge QD sample only when . We
identified that above 6.2 nm: due to a changing
effective mass (EM), while below 4.6 nm: due to
electron/ hole confinement. We propose that as the QD size is initially
reduced, the EM is reduced, which increases the Bohr radius and interface
scattering until eventually pure quantum confinement effects dominate at small
Recommended from our members
The development of a space climatology: 1. solar-wind magnetosphere coupling as a function of timescale and the effect of data gaps
Different terrestrial space weather indicators (such as geomagnetic indices, transpolar voltage, and ring current particle content) depend on different âcoupling functionsâ (combinations of near-Earth solar wind parameters) and previous studies also reported a dependence on the averaging timescale, {\tau}. We study the relationships of the am and SME geomagnetic indices to the power input into the magnetosphere P_{\alpha}, estimated using the optimum coupling exponent {\alpha} for a range of {\tau} between 1 min and 1 year. The effect of missing data is investigated by introducing synthetic gaps into near-continuous data and the best method for dealing with them when deriving the coupling function, is formally defined. Using P_{\alpha}, we show that gaps in data recorded before 1995 have introduced considerable errors into coupling functions. From the near-continuous solar wind data for 1996-2016, we find {\alpha} = 0.44 plus/minus 0.02 and no significant evidence that {\alpha} depends on {\tau}, yielding P_{\alpha} = B^0.88 Vsw^1.90 (mswNsw)^0.23 sin4({\theta}/2), where B is the Interplanetary Magnetic Field (IMF), Nsw the solar wind number density, msw its mean ion mass, Vsw its velocity and {\theta} is the IMF clock angle in the Geocentric Solar Magnetospheric reference frame. Values of P_{\alpha} that are accurate to within plus/minus 5% for 1996-2016 have an availability of 83.8% and the correlation between P_{\alpha} and am for these data is shown to be 0.990 (between 0.972 and 0.997 at the 2{\sigma} uncertainty level), 0.897 plus/minus 0.004, and 0.790 plus/minus 0.03, for {\tau} of 1 year, 1 day and 3 hours, respectively, and that between P_{alpha} and SME at {\tau} of 1 min. is 0.7046 plus/minus 0.0004
Visualising apoptosis in live zebrafish using fluorescence lifetime imaging with optical projection tomography to map FRET biosensor activity in space and time
Fluorescence lifetime imaging (FLIM) combined with optical projection tomography (OPT) has the potential to map Förster resonant energy transfer (FRET) readouts in space and time in intact transparent or near transparent live organisms such as zebrafish larvae, thereby providing a means to visualise cell signalling processes in their physiological context. Here the first application of FLIM OPT to read out biological function in live transgenic zebrafish larvae using a genetically expressed FRET biosensor is reported. Apoptosis, or programmed cell death, is mapped in 3-D by imaging the activity of a FRET biosensor that is cleaved by Caspase 3, which is a key effector of apoptosis. Although apoptosis is a naturally occurring process during development, it can also be triggered in a variety of ways, including through gamma irradiation. FLIM OPT is shown here to enable apoptosis to be monitored over time, in live zebrafish larvae via changes in Caspase 3 activation following gamma irradiation at 24 hours post fertilisation. Significant apoptosis was observed at 3.5 hours post irradiation, predominantly in the head region
Recommended from our members
Variability of dayside convection and motions of the cusp/cleft aurora
We present measurements of the ionospheric plasma flow over the range of invariant latitudes 71â76°, observed at 10-second resolution using both the EISCAT radars, with simultaneous observations of the 630 nm cusp/cleft aurora made by a meridian-scanning photometer at Ny Ă
lesund, Svalbard. A major increase in the trans-auroral voltage from 5 to 40 kV (associated with sunward convection in the early afternoon sector) is found to follow a southward motion of the aurora and coincide with the onset of regular transient auroral breakup events. It is shown that these observations are consistent with recent theoretical work on how ionospheric flows are excited by time-dependent reconnection at the dayside magnetopause
- âŠ