89 research outputs found

    Superconducting properties of the attractive Hubbard model

    Full text link
    A self-consistent set of equations for the one-electron self-energy in the ladder approximation is derived for the attractive Hubbard model in the superconducting state. The equations provide an extension of a T-matrix formalism recently used to study the effect of electron correlations on normal-state properties. An approximation to the set of equations is solved numerically in the intermediate coupling regime, and the one-particle spectral functions are found to have four peaks. This feature is traced back to a peak in the self-energy, which is related to the formation of real-space bound states. For comparison we extend the moment approach to the superconducting state and discuss the crossover from the weak (BCS) to the intermediate coupling regime from the perspective of single-particle spectral densities.Comment: RevTeX format, 8 figures. Accepted for publication in Z.Phys.

    Infrared spectra of one- and two-dimensional fullerene polymer structures: RbC60 and rhombohedral C-60

    Get PDF
    We compare the infrared spectra of two types of fullerene polymers: the linear-chain RbC60 and the two-dimensional pressure-polymerized rhombohedral C-60. Both the splitting of the F-1u modes and the structure of newly activated Lines are in agreement with fully ordered structures of molecular symmetry D-2h and D-3d, respectively

    Vibrational spectra of C60C8H8 and C70C8H8 in the rotor-stator and polymer phases

    Full text link
    C60-C8H8 and C70-C8H8 are prototypes of rotor-stator cocrystals. We present infrared and Raman spectra of these materials and show how the rotor-stator nature is reflected in their vibrational properties. We measured the vibrational spectra of the polymer phases poly(C60C8H8) and poly(C70C8H8) resulting from a solid state reaction occurring on heating. Based on the spectra we propose a connection pattern for the fullerene in poly(C60C8H8), where the symmetry of the C60 is D2h. On illuminating the C60-C8H8 cocrystal with green or blue light a photochemical reaction was observed leading to a similar product to that of the thermal polymerization.Comment: 26 pages, 8 figures, to appear in Journal of Physical Chemistry B 2nd version: minor changes in wording, accepted version by journa

    The shadow of the past: Convergence of young and old South American desert lizards as measured by head shape traits

    Get PDF
    Convergence is a pervasive phenomenon in the Tree of Life, and evolution of similar phenotypes sharing the same environmental conditions is expected in phylogenetically closely related species. In contrast, contingent factors are probably more influential in shaping phenotypic diversity for distantly related taxa. Here, we test putative convergent evolution of lizard head morphologies among relatively closely related desert dwelling Liolaemus species, and the very distantly related Ctenoblepharys adspersa. We estimated a multilocus time-calibrated phylogeny of 57 species of South American liolaemus lizards, based on seven molecular markers. We collected head shape data for 468 specimens, and used three phylogenetic comparative methods (SURFACE, CONVEVOL, and WHEATSHEAF index) to test for and estimate the strength of convergence. We found strong evidence for convergence among Pacific desert lizard C. adspersa, Liolaemus audivetulatus, Liolaemus insolitus, Liolaemus poconchilensis, Liolaemus stolzmanni, and a candidate species (Liolaemus “Moquegua”). Our results suggest that, despite the long divergence and phylogenetic distance of C. adspersa with respect to convergent Liolaemus species, natural selection was probably more important than historical contingency in shaping phenotypic evolution in these desert lizards.Fil: Aguilar Puntriano, CĂ©sar. Universidad Nacional Mayor de San Marcos; PerĂș. Museo de Historia Natural de San Marcos; PerĂșFil: Avila, Luciano Javier. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Centro Nacional PatagĂłnico. Instituto PatagĂłnico para el Estudio de los Ecosistemas Continentales; ArgentinaFil: de la Riva, Ignacio MarĂ­a. Consejo Superior de Investigaciones Cientificas. Museo Nacional de Ciencias Naturales; EspañaFil: Johnson, Leigh. University Brigham Young; Estados UnidosFil: Morando, Mariana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Centro Nacional PatagĂłnico. Instituto PatagĂłnico para el Estudio de los Ecosistemas Continentales; ArgentinaFil: Troncoso-Palacios, Jaime. Universidad de Chile; ChileFil: Wood, Perry L.. University of Kansas; Estados UnidosFil: Sites, Jack W.. University Brigham Young; Estados Unido

    General Brane Geometries from Scalar Potentials: Gauged Supergravities and Accelerating Universes

    Full text link
    We find broad classes of solutions to the field equations for d-dimensional gravity coupled to an antisymmetric tensor of arbitrary rank and a scalar field with non-vanishing potential. Our construction generates these configurations from the solution of a single nonlinear ordinary differential equation, whose form depends on the scalar potential. For an exponential potential we find solutions corresponding to brane geometries, generalizing the black p-branes and S-branes known for the case of vanishing potential. These geometries are singular at the origin with up to two (regular) horizons. Their asymptotic behaviour depends on the parameters of the model. When the singularity has negative tension or the cosmological constant is positive we find time-dependent configurations describing accelerating universes. Special cases give explicit brane geometries for (compact and non-compact) gauged supergravities in various dimensions, as well as for massive 10D supergravity, and we discuss their interrelation. Some examples lift to give new solutions to 10D supergravity. Limiting cases with a domain wall structure preserve part of the supersymmetries of the vacuum. We also consider more general potentials, including sums of exponentials. Exact solutions are found for these with up to three horizons, having potentially interesting cosmological interpretation. We give several additional examples which illustrate the power of our techniques.Comment: 54 pages, 6 figures. Uses JHEP3. Published versio

    RG flows from Spin(7), CY 4-fold and HK manifolds to AdS, Penrose limits and pp waves

    Get PDF
    We obtain explicit realizations of holographic renormalization group (RG) flows from M-theory, from E^{2,1} \times Spin(7) at UV to AdS_4 \times \tilde{S^7} (squashed S^7) at IR, from E^{2,1} \times CY4 at UV to AdS_4 \times Q^{1,1,1} at IR, and from E^{2,1} \times HK (hyperKahler) at UV to AdS_4 \times N^{0,1,0} at IR. The dual type IIA string theory configurations correspond to D2-D6 brane systems where D6 branes wrap supersymmetric four-cycles. We also study the Penrose limits and obtain the pp-wave backgrounds for the above configurations. Besides, we study some examples of non-supersymmetric and supersymmetric flows in five-dimensional gauge theories.Comment: 42 pages, 6 eps figures, typos and misprints correcte
    • 

    corecore