20 research outputs found

    Organic geochemistry of an Upper Jurassic – Lower Cretaceous mudstone succession in a narrow graben setting, Wollaston Forland Basin, North-East Greenland

    Get PDF
    The Oxfordian–Ryazanian was a period of widespread deposition of marine organic-rich mudstones in basins formed during the early phases of the rifting that heralded the formation of the present-day North Atlantic. Occasionally, uninterrupted deposition prevailed for 20 million years or more. Today, mudstones of this time interval are found on the shelves bordering the North Atlantic and adjacent areas from Siberia to the Netherlands. Here, we report data on two fully cored boreholes from Wollaston Forland (North-East Greenland, approx. 74° N), which represent an uninterrupted succession from the upper Kimmeridgian to the Hauterivian. The boreholes record basin development at two different positions within an evolving halfgraben, located at the margin of the main rift, and thus partially detached from it. Although the overall depositional environment remained an oxygen-restricted deep-shelf setting, rifting-related changes can be followed through the succession. The Kimmeridgian was a period of eustatic highstand and records the incipient rifting with a transgressive trend straddling the transition to the lower Volgian by a gradual change from deposits with high levels of total organic carbon (TOC) and kerogen rich in allochthonous organic matter to deposits with lower TOC and a higher proportion of autochthonous organic matter. This is followed by a slight regressive trend with lower TOC and increased proportions of allochthonous organic matter until rifting culminated in the middle Volgian–Ryazanian, indicated by increasing autochthonous organic matter and higher TOC, which prevailed until basin ventilation occurred towards the end of the Ryazanian. The properties of the reactive kerogen fraction remained rather stable irrespective of TOC, underlining the effect of terrigenous matter input for TOC. These variations are also captured by biological markers and stable carbon isotopes. The deposits are very similar to equivalent successions elsewhere in the proto-North Atlantic region, albeit the proportion of terrigenous kerogen is greater

    Using Polarized Spectroscopy to Investigate Order in Thin-Films of Ionic Self-Assembled Materials Based on Azo-Dyes

    Get PDF
    Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained

    Early Cretaceous vegetation and climate change at high latitude: Palynological evidence from Isachsen Formation, Arctic Canada

    Get PDF
    Quantitative palynology of the marginal marine and deltaic-fluvial Isachsen Formation of the Sverdrup Basin, Canadian Arctic, provides insight into high latitude climate during much of the Early Cretaceous (Valanginian to early Aptian). Detrended Correspondence Analysis of main pollen and spore taxa is used to derive three ecological groupings influenced by moisture and disturbance based on the botanical affinities of palynomorphs: 1) a mixed coniferous assemblage containing both lowland and upland components; 2) a conifer-filicopsid community that likely grew in dynamic lowland habitats; and, 3) a mature dry lowland community composed of Cheirolepidiaceans. Stratigraphic changes in the relative abundance of pollen and spore taxa reflect climate variability in this polar region during the ~20 Mya history of the Isachsen Formation. The late Valanginian was relatively cool and moist and promoted lowland conifer-filicopsid communities. Warming in the Hauterivian resulted in the expansion coniferous communities in well-drained or arid hinterlands. A return to relatively cool and moist conditions in the Barremian resulted in the expansion of mixed lowland communities. This work demonstrates the utility of a multivariate statistical approach to palynology to provide insight into the composition and dynamics of ecosystems and climate of high latitude regions during the Early Cretaceous

    Nutritional modulation of endogenous glucagon-like peptide-1 secretion: a review

    Full text link

    The life and scientific work of William R. Evitt (1923-2009)

    Get PDF
    Occasionally (and fortunately), circumstances and timing combine to allow an individual, almost singlehandedly, to generate a paradigm shift in his or her chosen field of inquiry. William R. (‘Bill’) Evitt (1923-2009) was such a person. During his career as a palaeontologist, Bill Evitt made lasting and profound contributions to the study of both dinoflagellates and trilobites. He had a distinguished, long and varied career, researching first trilobites and techniques in palaeontology before moving on to marine palynomorphs. Bill is undoubtedly best known for his work on dinoflagellates, especially their resting cysts. He worked at three major US universities and spent a highly significant period in the oil industry. Bill's early profound interest in the natural sciences was actively encouraged both by his parents and at school. His alma mater was Johns Hopkins University where, commencing in 1940, he studied chemistry and geology as an undergraduate. He quickly developed a strong vocation in the earth sciences, and became fascinated by the fossiliferous Lower Palaeozoic strata of the northwestern United States. Bill commenced a PhD project on silicified Middle Ordovician trilobites from Virginia in 1943. His doctoral research was interrupted by military service during World War II; Bill served as an aerial photograph interpreter in China in 1944 and 1945, and received the Bronze Star for his excellent work. Upon demobilisation from the US Army Air Force, he resumed work on his PhD and was given significant teaching duties at Johns Hopkins, which he thoroughly enjoyed. He accepted his first professional position, as an instructor in sedimentary geology, at the University of Rochester in late 1948. Here Bill supervised his first two graduate students, and shared a great cameraderie with a highly motivated student body which largely comprised World War II veterans. At Rochester, Bill continued his trilobite research, and was the editor of the Journal of Paleontology between 1953 and 1956. Seeking a new challenge, he joined the Carter Oil Company in Tulsa, Oklahoma, during 1956. This brought about an irrevocable realignment of his research interests from trilobites to marine palynology. He undertook basic research on aquatic palynomorphs in a very well-resourced laboratory under the direction of one of his most influential mentors, William S. ‘Bill’ Hoffmeister. Bill Evitt visited the influential European palynologists Georges Deflandre and Alfred Eisenack during late 1959 and, while in Tulsa, first developed several groundbreaking hypotheses. He soon realised that the distinctive morphology of certain fossil dinoflagellates, notably the archaeopyle, meant that they represent the resting cyst stage of the life cycle. The archaeopyle clearly allows the excystment of the cell contents, and comprises one or more plate areas. Bill also concluded that spine-bearing palynomorphs, then called hystrichospheres, could be divided into two groups. The largely Palaeozoic spine-bearing palynomorphs are of uncertain biological affinity, and these were termed acritarchs. Moreover, he determined that unequivocal dinoflagellate cysts are all Mesozoic or younger, and that the fossil record of dinoflagellates is highly selective. Bill was always an academic at heart and he joined Stanford University in 1962, where he remained until retiring in 1988. Bill enjoyed getting back into teaching after his six years in industry. During his 26-year tenure at Stanford, Bill continued to revolutionise our understanding of dinoflagellate cysts. He produced many highly influential papers and two major textbooks. The highlights include defining the acritarchs and comprehensively documenting the archaeopyle, together with highly detailed work on the morphology of Nannoceratopsis and Palaeoperidinium pyrophorum using the scanning electron microscope. Bill supervised 11 graduate students while at Stanford University. He organised the Penrose Conference on Modern and Fossil Dinoflagellates in 1978, which was so successful that similar meetings have been held about every four years since that inaugural symposium. Bill also taught many short courses on dinoflagellate cysts aimed at the professional community. Unlike many eminent geologists, Bill actually retired from actively working in the earth sciences. His full retirement was in 1988; after this he worked on only a small number of dinoflagellate cyst projects, including an extensive paper on the genus Palaeoperidinium

    Dinocyst stratigraphy of the Valanginian to Aptian succession (the Rurikfjellet and Helvetiafjellet formations) from Spitsbergen, Norway

    No full text
    In order to improve the understanding of how the high northern latitudes responded to the escalating warming which led to the middle Cretaceous super greenhouse climate, more temperature proxy records from the High Arctic are needed. One of the current obstacles in obtaining such records is poor age control on the Lower Cretaceous strata in the Boreal region. Here, we provide a biostratigraphic framework for the Rurikfjellet and Helvetiafjellet formations representing the lower part of the Lower Cretaceous succession on Spitsbergen. We also attempt to date the boundary between the Agardhfjellet and the Rurikfjellet formations. This study is based on dinoflagellate cysts (dinocysts) from three onshore cores (DH1, DH2 and DH5R) and three outcrop sections (Bohemanflya, Myklegardfjellet and Ullaberget). Relatively abundant and well-preserved dinocyst assemblages from the Rurikfjellet Formation date this unit as early Valanginian – early Barremian. The dinocyst assemblages from the Helvetiafjellet Formation are significantly impoverished and are characterized by reworking, but collectively indicate a Barremian–Aptian age for this formation
    corecore