5 research outputs found

    Towards a universal evapotranspiration model based on optimality principles

    Get PDF
    Natural resource management requires knowledge of terrestrial evapotranspiration (ET). Most existing numeric models for ET include multiple plant- or ecosystem-type specific parameters that require calibration. This is a significant source of uncertainty under changing environmental conditions. A novel ET model with no type−specific parameters was developed recently. Based on the coupling the diffusion (via stomata) of water and carbon dioxide (CO2), this model predicts canopy conductance based on environmental conditions using eco-evolutionary optimality principles that apply to all plant types. Transpiration (T) and ET are calculated from canopy conductance using the Penman-Monteith equation for T and a universal empirical function for the T:ET ratio. Here, the model is systematically evaluated at globally distributed eddy-covariance sites and river basins. Site-scale modelled ET agrees well with flux data (r = 0.81, root mean square error = 0.73 mm day–1 in 23,623 records) and modelled ET in 39 river basins agrees well with the ET estimated by monthly water budget using two runoff datasets (r = 0.62 and 0.66, respectively). Modelled global patterns of ET are consistent with existing global ET products. The model's universality, parsimony and accuracy combine to indicate a broad potential field of application in resource management and global change science

    The riverine bioreactor: an integrative perspective on biological decomposition of organic matter across riverine habitats

    Get PDF
    Riverine ecosystems can be conceptualized as ‘bioreactors’ (the riverine bioreactor) which retain and decompose a wide range of organic substrates. The metabolic performance of the riverine bioreactor is linked to their community structure, the efficiency of energy transfer along food chains, and complex interactions among biotic and abiotic environmental factors. However, our understanding of the mechanistic functioning and capacity of the riverine bioreactor remains limited. We review the state of knowledge and outline major gaps in the understanding of biotic drivers of organic matter decomposition processes that occur in riverine ecosystems, across habitats, temporal dimensions, and latitudes influenced by climate change. We propose a novel, integrative analytical perspective to assess and predict decomposition processes in riverine ecosystems. We then use this model to analyse data to demonstrate that the size-spectra of a community can be used to predict decomposition rates by analysing an illustrative dataset. This modelling methodology allows comparison of the riverine bioreactor's performance across habitats and at a global scale. Our integrative analytical approach can be applied to advance understanding of the functioning and efficiency of the riverine bioreactor as hotspots of metabolic activity. Application of insights gained from such analyses could inform the development of strategies that promote the functioning of the riverine bioreactor across global ecosystems

    The impact of tropical land-use change on downstream riverine and estuarine water properties and biogeochemical cycles: a review

    No full text
    corecore