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A B S T R A C T   

Natural resource management requires knowledge of terrestrial evapotranspiration (ET). Most existing numeric 
models for ET include multiple plant- or ecosystem-type specific parameters that require calibration. This is a 
significant source of uncertainty under changing environmental conditions. A novel ET model with no type-
− specific parameters was developed recently. Based on the coupling the diffusion (via stomata) of water and 
carbon dioxide (CO2), this model predicts canopy conductance based on environmental conditions using eco- 
evolutionary optimality principles that apply to all plant types. Transpiration (T) and ET are calculated from 
canopy conductance using the Penman-Monteith equation for T and a universal empirical function for the T:ET 
ratio. Here, the model is systematically evaluated at globally distributed eddy-covariance sites and river basins. 
Site-scale modelled ET agrees well with flux data (r = 0.81, root mean square error = 0.73 mm day–1 in 23,623 
records) and modelled ET in 39 river basins agrees well with the ET estimated by monthly water budget using 
two runoff datasets (r = 0.62 and 0.66, respectively). Modelled global patterns of ET are consistent with existing 
global ET products. The model’s universality, parsimony and accuracy combine to indicate a broad potential field 
of application in resource management and global change science.   

1. Introduction 

Evapotranspiration (ET) is a key land-surface process, linking the 
water cycle to the surface energy transfer. About 70% of terrestrial 
precipitation returns to the atmosphere via ET (Oki and Kanae, 2006), 
redistributing about 60% of the incoming radiative energy (Trenberth 
et al., 2009). Since ET represents water consumption, it performs an 
essential role in the diagnosis of drought effects (Vicente-Serrano et al., 
2010), monitoring crop growth (Tan et al., 2018), managing regional 
water resources (Zeng et al., 2019), and predicting climate change im-
pacts on vegetation (Piao et al., 2015; Feng et al., 2016). Accurate 
estimation of ET is thus a desideratum in hydrology, agriculture, and 

Earth system science. 
A strategy that calculates latent heat flux (λE, representing the en-

ergy absorbed or released during a phase change of water) using the 
Penman-Monteith (PM) equation and the surface-canopy constraint on 
water vapour diffusion has demonstrated its robustness in estimating ET 
over larger spatial areas (Mu et al., 2007; Zhang et al., 2010, 2019). 
Early studies relied on empirical scalars to describe environmental 
constraints relative to a hypothesised maximum conductance achieved 
under ideal conditions (Jarvis 1976; Lhomme, 2001; Katerji and Rana, 
2006). A more recent strategy, with a stronger theory basis, relies on the 
natural constraint resulting from the tight coupling of stomatal CO2 and 
H2O exchanges during photosynthesis. This strategy underlies the two 

* Corresponding author. 
E-mail address: wang_han@tsinghua.edu.cn (H. Wang).  

Contents lists available at ScienceDirect 

Agricultural and Forest Meteorology 

journal homepage: www.elsevier.com/locate/agrformet 

https://doi.org/10.1016/j.agrformet.2023.109478 
Received 5 October 2022; Received in revised form 18 April 2023; Accepted 19 April 2023   

mailto:wang_han@tsinghua.edu.cn
www.sciencedirect.com/science/journal/01681923
https://www.elsevier.com/locate/agrformet
https://doi.org/10.1016/j.agrformet.2023.109478
https://doi.org/10.1016/j.agrformet.2023.109478
https://doi.org/10.1016/j.agrformet.2023.109478
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agrformet.2023.109478&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Agricultural and Forest Meteorology 336 (2023) 109478

2

most widely used semi-empirical models for canopy conductance, the 
Ball-Berry (Ball et al., al.,1987) and Leuning (Leuning, 1995; Leuning 
et al., 2008) models. Medlyn et al. (2011) showed that a specific opti-
mality criterion –that plants maximize carbon gain while minimizing 
water loss– yields a model structure closely related to that of the 
Ball-Berry and Leuning models. 

However, either the semi-empirical models or the more theoretically 
based model requires PFT-specific parameterization and introduce non- 
negligible source of uncertainty (Li et al., 2015; Ma et al., 2019; Tan 
et al., 2021). Calibrated parameters can be biased (and may not realis-
tically be assumed constant in space or time) if the training dataset is 
insufficiently representative. Using data from different plant species 
within the same PFT or at leaf versus canopy scale, can alter calibration 
results (Franks et al., 2017; Medlyn et al., 2017; Miner et al., 2017). 
Further uncertainty is introduced in spatially upscaling or future pro-
jections when PFT distributions shift (Tan et al., 2021). 

Eco-evolutionary optimality principles are key to an emerging 
strategy that avoids the imputation of fixed PFT parameters in land- 
surface models by allowing key plant traits to vary continuously in 
space and time (Berzaghi et al., 2020; Franklin et al., 2020; Harrison 
et al., 2021). The concept of eco-evolutionary optimality rooted in 
natural selection and suggests that the eco-physiological properties of 
plants are selected with a tendency to maximize their carbon gain profile 
as a proxy of plant fitness. Based on this concept, Wang et al. (2017) 
developed a universal model for gross primary production (GPP) by C3 
plants, the P model. It has been shown that P model has a great potential 
in improving our understanding and predictions on eco-hydraulic pro-
cesses, such as separating ET components (Pérez-Priego et al., 2018; 
Nelson et al., 2020), and constraining ET estimation in land surface 
models (Zou et al., 2023). Based on observations from 20 flux sites, Tan 
et al. (2021) recently proposed a framework of ET and demonstrated the 
potential of the P model to estimate transpiration (T) and ET, without 
PFT-specific parameters. However, due to the limited number of sites 
and the confined scale at site level in that study, the robustness and 
universality of this novel universal ET model remains unclear. Their 
empirically fitted T/ET relationship require improvements at least for a 
better representation on the impact of soil moisture, which was 
currently missing. Moreover, an evaluation based on a water-balance 
equation at the basins that covering diverse climate and landscape 
types could be applied as an independent test (Wu et al., 2012). Thus, all 
those potential uncertainties beg a more comprehensive evaluation to 
support its universality. 

Here we have adopted a multi-scale evaluation approach (Fig. 1) to 
test the robustness and universality of the ET model introduced by Tan 
et al. (2021). We used site-scale ET data from 108 FLUXNET sites 
covering major ecosystem types. We also modelled ET globally at a 500 
× 500 m grid scale and an eight-day time step from 2003 to 2018 
globally and evaluated our results using the water balance approach 
over a multicontinental selection of large river basins using a diversity of 
datasets on precipitation, runoff, and terrestrial water storage. Finally, a 
benchmark comparison was made with other “off-the-shelf” global ET 
products. 

2. Material and methods 

2.1. The ET model 

The ET model presented in this study employs routine climatic var-
iables, such as net radiation (Rn), air temperature (Ta), vapour pressure 
deficit (VPD), atmospheric CO2 partial pressure (ca), wind speed (WS), 
soil water content (SWC), and RS-observed fraction of absorbed photo-
synthetically active radiation (fAPAR, Fig. 1). The core operation of the 
model is to derive canopy conductance using GPP and the ratio of leaf- 
internal to ambient CO2 partial pressure (i.e., χ) with the P model, which 
is a result of optimized conductance behaviour and is universally 
applicable across ecosystems with no PFT-specific parameters, except 

for the differentiation between C3 and C4 photosynthetic pathways. 
We used Fick’s law to describe the diffusion of CO2 through the 

stomata. Both H2O and CO2 molecules diffuse through the stomata and 
their conductances stand in a fixed ratio (1.6) to one another, deter-
mined by their molecular diffusivities. Canopy stomatal conductance to 
water vapour (Gs, m s− 1) can accordingly be written as: 

Gs = 1.6
GPP

ca(1 − χ) (1)  

where GPP is gross primary productivity (mol m− 2 s− 1). Eq. (7) describes 
leaf-level photosynthesis scaled up to the canopy via the “big-leaf” 
approximation, where ca is the atmospheric CO2 partial pressure (μmol 
mol− 1), and χ is the ratio of leaf-internal CO2 partial pressure (ci) to ca. 

The latent heat flux from the canopy represents the energy exchange 
for transpiration, denoted as λEt, and is calculated using the PM equa-
tion: 

λEt =
Δ Rn, c + ρ cp VPD ga

Δ + γ(1 + ga/Gs)
(2)  

where Δ is the slope of the curve relating saturation water vapour 
pressure to air temperature (kPa K–1) and Rn, c is the available energy, i. 
e., net radiation minus ground heat flux (Rn – G), intercepted by the 
canopy (W m–2). Since shortwave radiation is generally the largest 
component of net radiation during daytime and G represents a small 
proportion of total Rn (0.7 ± 3.2%), the fraction Rn, c of the total Rn is 
approximately equal to the fraction of absorbed photosynthetically 
active radiation, or fAPAR (Gan et al., 2018; Zhang et al., 2019). ρ is the 
density of air (kg m–3), cp is the heat capacity of dry air (J kg–1 K–1), VPD 
is the vapour pressure deficit (hPa), γ is the psychrometer constant (kPa 
K–1), and ga is the aerodynamic conductance (m s− 1), which was esti-
mated by the model of Thom (1972): 

1
/

ga =
u
u2
∗

+ 6.2u− 0.67
∗ (3)  

where u is the wind speed (m s–1) and u* (m s–1) is the friction velocity, 
obtained from flux observations. A simpler equation recommended by 
Allen et al. (1998) was used when u* was unavailable, and for 
global-scale prediction: 

1/ga = 208/u (4) 

Fig. 1. Flowchart of this research. Rectangles represent model or method; 
parallelograms represent input data or intermediate outputs. The calculation 
and evaluation of site scale ET is based on a local calculation platform, while 
the calculation of global ET map is based on the Google Earth Engine (GEE). For 
basin-scale evaluation, P is total precipitation (mm month− 1), including rainfall 
and snowfall, Q is total runoff (mm month− 1), and ΔS is the total change in 
water storage (mm month− 1). 
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The P model provides a general way to predict GPP and χ in Eq. (7), 
which is an extension of the FvCB biochemical model of C3 photosyn-
thesis (Farquhar et al., 1980). It implicitly predicts spatial and temporal 
variation in the three unknown parameters of the FvCB model, photo-
synthetic capacities (Vcmax and Jmax) and χ, at the canopy level (Wang 
et al., 2017; Stocker et al., 2020). The instantaneous assimilation rate in 
the FvCB model is the lesser one of the electron transport-limited rate 
(AJ) and the carboxylation-limited rate (AC). The rates of both processes 
are limited by ci, and therefore depend on ca and χ. The least-cost hy-
pothesis states that plants minimize the sum of the costs (per unit 
assimilation) of maintaining the capacities for carboxylation and tran-
spiration, through the regulation of stomatal conductance (Wright et al., 
2003; Prentice et al., 2014). This hypothesis leads to a prediction of 
optimal χ: 

χ = Γ∗
/

ca + (1 − Γ∗ / ca)ξ
/(

ξ+
̅̅̅̅̅̅̅̅̅̅
VPD

√ )
, (5a)  

ξ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[β(K + Γ∗)/1.6η∗]

√
(5b)  

where Γ∗ is the photorespiratory compensation point (Pa), VPD is the 
vapour pressure deficit (Pa), η∗ is the viscosity of water relative to its 
value at 25℃, and K is the effective Michaelis-Menten coefficient of 
Rubisco (Pa) – all influenced by air temperature (Ta in ◦C ). β = 146 is a 
dimensionless constant, estimated by Smith et al. (2019) based on a 
global compilation of stable carbon isotope data from leaves. 

A second optimality hypothesis, the coordination hypothesis, states 
that on a weekly to a monthly time scale, AJ and AC converge (Chen 
et al., 1993; Haxeltine and Prentice 1996; Maire et al., 2012) by accli-
mation of the maximum rate of carboxylation (Vcmax) (Smith et al., 
2019). Wang et al. (2017) showed that the least-cost and coordination 
hypotheses together lead to a closed-form expression for GPP. Despite its 
basis on the FvCB model of instantaneous photosynthesis, which implies 
a non-linear, saturating response to light, the P model has the mathe-
matical form of a light use efficiency (LUE) model (Wang et al., 2017): 

GPPC3 = φoIabsm
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[1 − (c∗/m)]
2/3

√

β(θ) (6a)  

m = (ci − Γ∗)/(ci + 2Γ∗) (6b) 

In Eq. 6, φo is the intrinsic quantum yield of C3 photosynthesis (mol 
CO2 mol–1 photon) and is calculated as 
φo, C3 = (0.352+0.021Ta − 0.00034T2

a )/8 based on Bernacchi et al. 
(2003). Iabs is the photosynthetic photon flux density (PPFD) intercepted 
and absorbed by the canopy (mol photon m–2 s–1). Two dimensionless 
constants, c∗ (0.41, estimated from published measurements of Vcmax 
and Jmax; Wang et al., 2017) and β (from Eq. A6) are required. β(θ) is a 
global multiplier that describes the effect of low soil water content 
(SWC, m3 m–3) on GPP (Stocker et al., 2020). 

We have modified the P model to predict photosynthesis and 
conductance for C4 plants based on the theory by Collatz et al. (1992). 
Given that phosphoenolpyruvate carboxylase, (the initial carboxylating 
enzyme in the C4 pathway), has a higher affinity for CO2 than Rubisco 
(the primary carboxylating enzyme of the C3 pathway), we assume that 
C4 photosynthesis is not limited by the intercellular CO2 concentration, 
i.e., we set m = 1 in Eq. 6, (Sayre et al., 1979). The intrinsic quantum 
yield of C4 photosynthesis is calculated as: 
φo,C4 = − 0.008 + 0.00375 Ta − (0.58 ×10− 4) T2

a (Cai and Pren-
tice, 2020, based on published measurements). For C4 plants, we 
adopted a typical χ value of 0.45 (Farquhar et al., 1989). The full P 
model code is available at https://github.com/stineb/rpmodel. 

A weekly time step is adopted for the prediction of GPP and T given 
the assumption underlying the P model, stating that the leaf-level 
acclimation of photosynthetic parameters to environment occurs over 
a at least weekly time scale. ET was finally estimated from T and its 
fraction in total ET flux. This fraction (the ratio of T to ET) is largely 
constrained by local environment due to water limitation under dry 

conditions and energy limitation under wet conditions. There is evi-
dence that this ratio is temporally conservative without strong depen-
dence on the local environment (Paschalis et al., 2018). We fitted 
site-specific (but time-invariant) values of T/ET from the predicted T 
and observed ET but based on five more times of the sites used in Tan 
et al. (2021). We exploited those site-specific T/ET to simulate the 
seasonal cycle of ET and to explore the potential environmental de-
pendencies of this ratio. For this purpose, 80% of the sites were 
randomly selected as the training dataset, and the remaining 20% used 
for evaluation. 

2.2. Model validation and evaluation 

We collected all the in-situ tower-based measurements from the 
FLUXNET 2015 dataset (http://fluxnet.fluxdata.org/data/fluxnet2015 
-dataset/; last access: 2 September 2022). From this dataset, 108 sites 
were selected due to their energy balance closure [(Rn − G)/(λE + H)] 
falling between 0.8 to 1.2 and > 50% of fAPAR records being good 
quality (filtered by the quality-control masque provided with the data-
set). More detailed information and the spatial distribution of the 
selected sites can be found in Table S1 and Fig. 2. 

Observed ecosystem carbon flux was partitioned into GPP and 
respiration at a half-hourly timestep using day-time Lasslop et al., 2010) 
and night-time (Reichstein et al., 2005) separation methods, as given by 
the data providers. Averages of day-time and night-time partitioning 
results were treated as GPP observations. Unreliable records were 
filtered out before analysis by requiring the following criteria suggested 
by Zhang et al. (2018): ((7) downwelling radiation should be 
non-negative; (8) the difference between day- and night-time GPP re-
cords should be < 2 gC m− 2 day− 1 or 20%. We then corrected the energy 
balance based on the Bowen ratio method suggested by Twine et al. 
(2000). 

Our model requires observed fAPAR as input for both GPP and ET. 
We used the MYD15A2 v006 product from MODIS (MoDerate Resolu-
tion Imaging Spectroradiometer) from 2003 to 2018, which has an 
eight-day time step and a spatial resolution of 500 m (Myneni et al., 
2015). We used a linear interpolation and a Savitzky–Golay filter to 
rebuild a daily fAPAR series for each grid and reduce its high-frequency 
noise (Chen et al., 2004). Instead of using tower-based measurements for 
the site-scale analysis, we used meteorological inputs including Ta, VPD, 
Rn, SWC and wind speed from GLDAS (Global Land Data Assimilation 
System, v2.1) to drive the model. GLDAS v2.1 assimilates the data from 
satellite and ground observations starting from CE 2000 (Rodell et al., 
2004a). The original product is provided on a 0.25∘ × 0.25∘ global grid. 

Except for site-scale calculation and evaluation, we implemented the 
model in Google Earth Engine (GEE), which provides a highly effective 
way to process data at a global scale due to the direct access to global 
datasets and the possibility to process high-resolution data using cloud 
computing (Gorelick et al., 2017). To describe the GPP and ET contri-
butions from C4 plants, we use a global map of C4 plant proportions from 
Still et al. (2003). For each grid cell, total carbon or water fluxes (FLUX) 
were calculated as weighted averages: 

FLUX = FLUXc3 × AREAc3 + FLUXc4 × AREAc4 (7)  

where FLUXc3 and FLUXc4 represent carbon and water fluxes from C3 
and C4 plants and AREAc3 and AREAc4 represent the proportion of the 
grid cell occupied by C3 and C4 plants provided by the C4 proportion 
map. 

A weekly time step was adopted to predict site-scale GPP, T and ET. 
This time step is appropriate because the theory behind the P model is 
based on leaf-level acclimation of photosynthetic parameters to envi-
ronment, which occurs over a time scale of one week or more. The 
average daily fAPAR after Savitzky–Golay filtering was finally used as 
the input to the model. An eight-day time step was adopted to map 
global GPP and ET, since the satellite fAPAR observations are provided 
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at this interval. 
We compared modelled ET based on remote sensing (denote as ETRS) 

with ET calculated by a basin-scale water budget (ETWB). ETWB was 
calculated monthly as ETWB = P − Q − ΔS, where P is precipitation, Q is 
runoff and ΔS is terrestrial water storage change. We carried out this 
water balance evaluation in 39 global distributed river basins Fig. 2 and 
Table S2). The selection of these basins following the criteria: ((1) 
distributed in all continents except Antarctica; (2) largest areas within 
their ecoregion and climate zones (38 basins’ area are > 100,000 km2); 
(3) including at least five years of effective observations, considering 
that the MODIS product used in this study is only available from 2002 
onwards. We downloaded the measured streamflow data from the GRDC 
portal (Global Runoff Data Centre, https://portal.grdc.bafg.de/; last 
access: 2 Sep., 2022), except for four Chinese stations (Harbin, Tieling, 
Huayuankou, and Datong), for which data were obtained from the 
Ministry of Water Resources of China (http://www.mwr.gov.cn/; last 
access: 2 Sep., 2022). Observed streamflow records were accumulated 
and converted to depth units (mm) by dividing these values by river 
basin drainage area. We also used a monthly gridded runoff dataset, 
GRUN (Global Runoff Reconstruction), with a spatial resolution of 0.5∘ 

×0.5∘ (Ghiggi et al., 2021). Changes in terrestrial water storage were 
estimated using GRACE (Gravity Recovery And Climate Experiment) 
satellite gravity observations, which provide spatially distributed 
time-series information for water storage changes (Rodell et al., 2004b) 
and have been widely applied in hydrological projections (Rodell et al., 
2009; Bai and Liu, 2018). We used the average of three equivalent water 
thickness products from CSR (University of Texas center for Space 
Research), GFZ (GeoForschungsZentrum Potsdam) and JPL (NASA Jet 
Propulsion Laboratory), all of which are available through the GEE 
(Swenson and Wahr, 2006; Landerer and Swenson, 2012). Detailed in-
formation on products used in the water balance analysis can be found in 
Table 1. 

We also compared our results with other ET products globally 
(Table 2), including outputs from another calibration-free complemen-
tary relationship (CR) method (N Ma et al., 2021); two reanalysis 
products: GLDAS and ERA-5; three the RS-based products: PML (Pen-
man-Monteith-Leuning, Zhang et al., 2019), GLEAM (Global Land 
Evaporation Amsterdam Model, Martens et al., 2017) and NTSG 

(Numerical Terradynamic Simulation Group, Zhang et al., 2010); and an 
ensemble product based on a state-of-the-art ET synthetic method based 
on site-scale observation (here called SET, Elnashar et al., 2021). 

3. Results 

3.1. Evaluation of related variables 

3.1.1. GPP 
Weekly GPP observations compared well with our model estimates 

(Fig. S1 and Table S3). Results from all records (N = 30,012) indicated a 
correlation coefficient (r) = 0.77, root-mean-square error (RMSE) =
2.73 gC d–1, and Nash-Sutcliffe Efficiency coefficient NSE = 0.21. At site 
scale, r ranged from 0.41 (at GF-Guy) to 0.96 (AR-Slu) while RMSE 

Fig. 2. Map of flux sites and river basins used in this study. Flux sites and river basins are labelled by black points and polygons, respectively. The map background is 
a moisture index, represented by the averaged ratio of actual ET divided by potential evapotranspiration (ET/PET) from 2003 to 2018, as provided by GLDAS v2.1. 

Table 1 
List of products used in water balance analysis.  

Item Product Type Resolution 

Spatial Temporal 

Q GRDC Observation – 1 month 
GRUN Gridded 0.5◦ 1 month 

P WFDE5 Reanalysis 0.5◦ 1 h 
ΔS CSR Remote sensing 0.5◦ ~1 month 

GFZ 
JPL  

Table 2 
List of ET products in global evaluation and comparison.  

Product name Type Resolution   

Spatial Temporal 

CR Complementary relationship 0.25◦ 1 month 
SET Synthetic 500 m 8 day 
GLDAS v2.1 Reanalysis 0.25◦ 3 hour 
ERA5  0.1◦ 1 hour 
PML v2 Remote sensing 500 m 8 day 
GLEAM v3  0.25◦ 1 month 
NTSG  8000 m 1 month  
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ranged from 0.55 gC d–1 (US-SRM) to 3.55 gC d–1 (US-Ne1). A good 
correlation (r = 0.86) at this site supports the extension of the model to 
C4 plants. The comparison using all GPP observations (Fig. S1) exhibited 
a slight overestimation of GPP (slope = 1.2 forced through the origin). 
We attribute this overestimation to the fact that some of the records are 
not provided with effective soil moisture observations. If these records 
were removed, overestimation is reduced (slope of 1.08 and RMSE of 
2.55 gC d–1 with N = 8473, see Fig. S1b), similar to 1.0 as reported by 
Stocker et al. (2020). 

The accuracy of the P model predictions of GPP was not significantly 
related to land cover categories, supporting the model’s universality 
(LCs, Fig. S2). The RMSE for each land cover class in Table S3 generally 
increased with fAPAR simply due to the greater assimilation rates of 
denser canopies resulting in a relative root mean squared error (RRMSE) 
approximately constant over the range of fAPAR (Fig. S2b). We observed 
a wider variation of r at evergreen broadleaf forest (EBF) sites, however, 
likely due to the poor quality of fAPAR inputs in dense tropical forests 
where over 90% of MODIS observations are contaminated by clouds. 

Global patterns of modelled GPP are similar to those shown in other 
global products (Fig. S3). The GPP trends from all three satellite-based 
GPP products are also similar to solar-induced fluorescence (SIF) ob-
servations (Fig. S3d). Stocker et al. (2020) also reported that global P 
model results are consistent with the MTE (Jung et al., 2011), BESS 
(Jiang and Ryu, 2016) and FLUXCOM products (Tramontana et al., 
2016). 

3.1.2. Transpiration 
Modelled transpiration shows a global pattern similar to the 

ensemble average of GLDAS, GLEAM and PML (Fig. 3). Regions with the 
highest annual transpiration (over 1000 mm yr− 1) are locate in the 
tropical rainforest regions; regions with transpiration < 400 mm yr− 1 

are located in hyper-arid, arid and semi-arid regions (Lian et al., 2021). 
The global pattern shown here is especially close to PML, perhaps 
because the two methods both use the PM equation, the same descrip-
tion of canopy intercepted energy, and GLDAS forcing data as input 
(Fig. S4). GLEAM uses a constrained Priestly-Taylor equation to calcu-
late transpiration, and also shows a similar pattern with our result and 
PML. All three RS-based methods (our method, PML and GLEAM) sug-
gest greater transpiration in tropical rainforests than GLDAS estimates. 

3.1.3. The T:ET ratio 
Four variables (Ta, Rn, SWC, and fAPAR) contributed significantly (p 

< 0.05) to the T:ET ratio according to a partial residual analysis. Their 
partial correlation is shown in Fig. S5, resulting in a predictive function 
in which fAPAR plays a major role: 

T/ET = 0.0018 × Rn + 1.14 × fAPAR − 0.0069 × Ta − 0.0029 × SWC

+ 0.11
(8)  

Here, the unit of Rn is W m− 2, the unit of fAPAR is unitless, the unit of Ta 
is ℃, the unit of SWC is m3 m–3. 

Almost no difference in T:ET accuracy was found between the 
training group (r = 0.75) and the validation group (r = 0.74) of sites, 
indicating that this function can estimate abiotic evaporation without 
the requirement to consider different ecosystem or climate types (Fig. 4). 
Overall, the global pattern of the empirical function is consistent with 
the average of the other models, as shown by the closely overlapping 
latitudinal profiles in Fig. S6. 

3.2. Evaluation of ET 

3.2.1. Site-scale evaluation 
Comparison with flux measurements showed satisfactory accuracy 

for the site-scale ET estimates (Fig. 5, Table S4). Modelled ET showed a 
good correlation (r = 0.81 and NSE = 0.63) and an acceptable uncer-
tainty (RMSE = 0.73 mm d − 1) when compared to observations. The 
model thus showed similar accuracy to the cross-validation mode of 
PML (f r = 0.82 in an eight-day interval evaluation; see Zhang et al., 

Fig. 3. Transpiration from this study (a) and (b) the ensemble average of three other products (GLDAS, GLEAM and PML). Latitudinal profiles are displayed in panel 
c with shading to represent the standard error amongst the three products. Unvegetated areas are masked, and not included in the calculation. 

Fig. 4. Comparison of predicted (Eq. (8)) and observation-based T:ET ratio 
(linear regression of modelled T against ET observations). Colours distinguish 
the training and validation groups. The dashed line is the 1:1 line. 
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2019), and better accuracy than the SET method in (<0.8 of r in a 
monthly interval validation; see Elnashar et al., 2021). Modelled ET at 
sites representing different ecosystem types demonstrate that the model 
can reproduce typical seasonal cycles of observed ET (Fig. 6). Note the 
correspondence between the annual ET peak at the savanna site 
(AU-Das) and low VPD values, contrasting with the forest sites where the 
annual ET peak occurs at high VPD – both patterns predicted accurately 
by the model. 

The universality of the model is supported by the finding of 
approximately constant data-model correlations and RRMSE across 
ecosystem types covering the range of fAPAR (Fig. 7). The mean and 
median r-values are 0.82 and 0.84, receptively. Ninety percent of the 

sites (97 of 108) have an r-value > 0.7 and 64% > 0.8. Mean and median 
values for RMSE are 0.42 and 0.40 mm d− 1, respectively. As with GPP, 
the model shows a greater range of r-value at EBF sites, likely due to 
uncertainties in the input fAPAR, but no greater RRMSE. And even 
though we adopted an empirical function to describe the T:ET ratio, this 
ratio shows no systematic pattern with to the PFTs– only to local envi-
ronmental and canopy conditions. 

3.2.2. Basin-scale evaluation 
Comparison of modelled ET results (ETRS) with ET estimated by the 

water balance equation (ETWB) demonstrated that our model performs 
with satisfying accuracy not only at flux sites but also in river basins with 
diverse terrestrial conditions located in different continents (Fig. 8). This 
robustness is a prerequisite for extending current model in regional 
applications. ETRS showed a good correlation with ETWB using both 
station-measured streamflow and the gridded runoff dataset (r = 0.62 
using GRDC and 0.66 using GRUN). ETWB using the GRUN dataset has a 
slightly closer water budget (fitting slope = 0.95, compared with 0.87 
using GRDC observations). 

3.2.3. Global evaluation 
Modelled ET showed global spatial patterns consistent with expec-

tations (Fig. 9) and other state-of-the-art global ET products (Fig. S7) 
with high ET (> 1000 mm yr–1) in tropical rain forest regions and low ET 
(< 200 mm yr− 1) in arid or cold regions, reflecting constraints either by 
water availability or by low temperatures. The global ET distribution 
also shows similar temporal behaviour to other products over time 
(Fig. 10). We estimated a global mean annual ET of 526.5 ± 13.3 mm 
yr− 1 from 2003 to 2018, equivalent to 75.8 ± 1.9 × 103 km3 yr− 1 

globally. This result is close to the average of other ET products (74.8 ±
6.4 km3 yr− 1) and lies in the mid-range of global ET calculated in pre-
vious studies by diverse estimation strategies, including FLUXCOM 
(Jung et al., 2019) with ~76.0 for two different input configurations 
(2001–2013); PLSH (Zhang et al., 2015) with 74.3 (1982–2013); Simple 
Terrestrial Evaporation to Atmosphere Model (STEAM, Wang-Erlands-
son et al., 2014) with 73.9 (2003–2017); and Water Balance model with 

Fig. 5. Scatter plots between ET observations and model estimates. Point 
density (number of points within each 0.25×0.25 grid cell) is represented by 
colours. The black dashed line represents the 1:1 line. The red line is the linear 
fit with the intercept constrained to equal zero. 

Fig. 6. Time series of eight-day average ET (mm d − 1), VPD (kPa), and precipitation (10− 1 mm d − 1). The four flux sites selected here represent different land cover 
classes typical vegetation LCs: AU-Das (savanna), AU-Tum (evergreen broadleaf forest), CA-TP3 (evergreen needleleaf forest), and US-Ha1 (deciduous broad-
leaf forest). 
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Model Tree Ensemble (WB-MTE, Zeng et al., 2014) with 71.1 
(1982–2009). The modelled latitudinal profile consistent with results 
reported by Zhang et al. (2019) and N Ma et al. (2021), which supports 

the robustness of our results. 

Fig. 7. Correlation coefficients (panel a) and RRMSE (panel b) of modelled ET within different land cover classes. The filled colour of each boxplot represents the 
mean fAPAR of different land cover classes, which are sorted by mean fAPAR. The land cover classification follows the International Geosphere-Biosphere Pro-
gramme (IGBP) system, where OSH = open shrublands, SAV = savannas, WET = wetlands, GRA = grasslands, WSA = woody savannas, CRO = croplands, EBF =
evergreen broadleaf forests, ENF = evergreen needleleaf forests, CSH = closed shrubland, DBF = deciduous broadleaf forests, MF = mixed forests, MAI = maize. The 
boxplots show the 25th and 75th percentiles (box edges). Median values are shown by black horizontal bars in each box and the whiskers correspond to 1.5 times the 
inter-quartile range. 

Fig. 8. Scatter plots of ETRS against ETWB. Station-observed streamflow from GRDC (a) and gridded runoff data from GRUN (b). The red line is the linear fit with zero 
intercept. The black dashed line is the 1:1 line. Precipitation data are from WFDE5. 

Fig. 9. Modelled global ET distribution. Average annual ET (mm yr− 1) from 2003 to 2018 mapped, with the latitudinal profile shown in panel (b).  
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4. Discussion 

4.1. Towards a universal ET model 

Accurate estimation of terrestrial ET is important for global hydro-
logical studies. Previous studies have shown that this task remains 
challenging in part due to the continued application of site-scale cali-
brated parameters (Fisher et al., 2017). Our model bypasses this limi-
tation and thereby provides a promising tool to analyse the interaction 
between the water-cycle and the carbon-cycle. 

The similarities amongst the existing, highly calibrated ET products 
for the present-day world masque divergent sensitivities to climate 
change. A comparison of the sensitivity of different surface conductance 
models to increasing temperature and ambient CO2 concentration has 
shown that different models show large differences due to both the 
differences between model structures, and the dependence of the results 
on a prescribed land cover map (Tan et al., 2021). Our model avoids 
these problems by eliminating PFT-specific calibrations of parameters. 
Wang et al. (2017) showed that the P model provides a universal way to 
model GPP across all C3 biomes. The few parameters in the model are 
either known independently based on plant physiological studies 
(including the Michaelis constant of Rubisco, the photorespiratory 
compensation point and the intrinsic quantum efficiency, and their 
temperature dependencies), or have been estimated based on separate 
global data analyses. 

A universal ET model is desirable not only for remote sensing ap-
plications, but also more broadly for Land Surface Models (LSMs) that 
are components of climate and Earth System models and used in pro-
jections of future climate change. The uncertainty of modelled surface 
fluxes caused by reliance on calibrated, PFT-specific parameters has 
been noted and evaluated in several studies (e.g., Dai et al., 2019; 
Mölders 2005; Teuling et al., 2009). Ma et al. (2019) and N Ma et al. 
(2021) suggested that calibration-free ET estimation methods hold 
promise for achieving performance at least comparable with that of 
conventional, highly parameterized methods. Those studies focused on 
the CR as a global general principle. Plant optimality theory offers an 
alternative route towards a calibration-free model for ET, while the 
fine-resolution RS input produces a result with greater spatial detail to 
describe the heterogeneity of the land surface. 

4.2. Uncertainties 

The accuracy of the model presented here relies on the quality of 
input variables. fAPAR in particular strongly influences both modelled 
GPP and ET. We used fAPAR from the MODIS product, which neglects 
the contribution from atmosphere-diffused radiance (Myneni et al., 
2002). This downside of the MODIS product causes an underestimation 
of GPP under cloudy conditions (Yuan et al., 2014). The single calibrated 
scaling factor for photosynthetic quantum efficiency introduced by 

Stocker et al. (2020) can in principle compensate for magnitude differ-
ences amongst fAPAR products. Different fAPAR definitions that con-
siders the contribution from foliage (Chen et al., 1996) or chlorophyll 
(Zhang et al., 2020) could be used to improve the representation of 
photosynthetic energy absorption in the model. 

The difference between the C3 and C4 photosynthetic pathways is 
important, but their distributions are imperfectly known. The map of 
C3/C4 plant fractions on a 1◦ grid from Still et al. (2003) is the best 
available, yet its accuracy is unknown; its coarse resolution is a limita-
tion, and it cannot, by definition, take into account land-cover changes 
that have taken place since the underlying data were collected. A robust, 
near real-time classification strategy to identify the C3/C4 fraction is 
lacking. A variation of 0.2 of this fraction brings ~10% uncertainty in 
GPP and ET under standard meteorological conditions (Ta = 25◦C, VPD 
= 1 kPa, fAPAR = 0.8, Rn = 150 W m–2, ca = 40 Pa). F 

The largest uncertainty (as in other ET products) however comes 
from the T:ET ratio (Gu et al., 2018; Lian et al., 2018). According to a 
relative importance analysis by Lindeman et al. (1980), fAPAR has a 
paramount contribution to T:ET (95%). This result is also supported by 
previous studies showing that increasing terrestrial greenness (repre-
sented by fAPAR) enhances the T:ET ratio (Wang et al., 2014; Lian et al., 
2018). This is because a denser canopy can intercept more downwelling 
radiation (see Eq. (8)), reducing the energy available for soil evapora-
tion. Therefore, T:ET correlates highly with fAPAR (p < 0.001) but only 
moderately with Rn (p < 0.05). Increasing temperature has a positive 
effect on transpiration (N Ma et al., 2021) and soil evaporation rate 
(Gan et al., 2018). Soil moisture also has positive effects on both T and E. 
The negative contribution from Ta and SWC on the T:ET ratio indicates 
that the evaporation rate is more sensitive to temperature and moisture 
than the transpiration rate. 

We simplified this complex process to an empirical function, for two 
main reasons: (7) Paschalis et al. (2018) suggested that in undisturbed 
ecosystems T:ET varies over a relatively narrow range (0.7 ± 0.09); (8) 
calculation of the abiotic evaporation is thereby independent of the 
transpiration model, which means the T:ET sub-model can be developed 
independently. Tan et al. (2021) showed that this fitted T:ET ratio has an 
acceptable performance compared with state-of-the-art ET partitioning 
strategies (Tan et al., 2021). However, our model indicated a higher T: 
ET than that of other models in tropical forest regions. The predicted T: 
ET ratio in these regions was close to 1, meaning that nearly all modelled 
ET there consists of transpiration. Intercepted evaporation is likely to 
have been underestimated in these environments because only two sites 
showed > 2000 mm annual precipitation. Thus, the empirical T:ET 
formulation used in the model could likely be improved through the 
inclusion of more data from the wet tropics. 

A potential improvement of the method would the implementation 
of the surface evaporative capacitance to describe soil evaporation (Or 
and Lehmann, 2019), Gash’s model to describe the evaporation from 
intercepted water (Gash, 1979), and to use multiple types of ground 
measurements to evaluate evaporation and transpiration separately 
(Nelson et al., 2020). 

5. Conclusion 

In this study, we evaluate a novel ET model with no PFT-specific 
parameters. The model based on eco-evolutionary optimality princi-
ples that apply across all plant types. Canopy conductance is predicted 
based on the principle that plants would minimizes the combined costs 
(per unit carbon assimilation) of maintaining the biochemical and 
water-transport capacities required for photosynthesis. A site-scale 
evaluation based on 108 globally distributed flux sites demonstrate 
that the ET estimation achieves satisfactory accuracy. A basin-scale 
analysis showed that the model’s performance remains stable when 
extrapolated to wider spatial domains. Global mapping results show that 
the model can produce a comparable ET estimation to other state-of-the- 
art products. 

Fig. 10. Temporal trend of modelled ET compared to an average of other 
global products, containing CR, ERA-5, SET, GLDAS, GLEAM, NTSG and PML. 
Our result is represented by the blue solid line; the ensemble average by a black 
dashed line, with standard error in grey. 
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GLDAS (https://ldas.gsfc.nasa.gov/gldas/GLDASpublications.php); 
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sets/era5); GRDC runoff (https://www.bafg.de/GRDC/EN/Home/ 
homepage_node.html); GRUN (https://figshare.com/articles/dataset/ 
G-RUN_ENSEMBLE/12,794,075); GRACE (https://grace.jpl.nasa.gov/ 
data/get-data/jpl_global_mascons/); CR (https://doi.org/10.6084/m9. 
figshare.13634552); GLEAM (https://www.gleam.eu); PML (https:// 
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tion/PML/OUTPUT/PML_V2_8day_v014); NTSG (https://www.ntsg. 
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Appendix: Empirical dependencies in P model 

There are three temperature dependant variables in Eq. (7), 5 and 6: Γ∗, η∗and K. The temperature dependencies of photosynthetic parameters can 
be described by the Arrhenius equation, requiring only the specification of a reference value (at 25◦C by convention) and an activation energy. Thus Γ∗

was calculated by: 

Γ∗ = Γ∗
25exp[(ΔHr∗ /R)(1 / 298.15 − 1 /Ta)] (A1)  

where Γ∗
25 is the value of Γ∗ at 298.15 K (4.22 Pa), ΔHr∗ is its activation energy (27,056 J mol–1), and R is the universal gas constant (8.314 J mol–1 K–1). 

η∗ can be calculated by: 

η∗ = exp
{

580
[

1
T − 138

]}

− [1 / 160] (A2)  

K was calculated by: 

K = Kc (1+O /Ko) (A3a)  

Kc = Kc,25exp[(ΔHK c /R)(1 / 298.15 − 1 /Ta)] (A3b)  

Ko = Ko,25exp[(ΔHK o /R)(1 / 298.15 − 1 / Ta)] (A3c)  

where O is the partial pressure of oxygen (209,460 μ mol mol− 1× atmospheric pressure in Pa), Kc,25 is the value of Kc at 298.15 K (40.41 Pa), ΔHK c is 
64,805.5 J mol–1, Ko,25 is the value of Ko at 298.15 K (27,480 Pa), and ΔHK c is 36,164 J mol–1. The response values for parameters used to predict CO2 
uptake during photosynthesis come from existing studies (Bernacchi et al., 2001, 2003; Prentice and Thomas, 2018). 

An empirical function of plant-available volumetric soil water content (θ) was incorporated to describe the soil water stress on GPP, suggested by 
Stocker et al. (2020): 

β(θ) =
{

q(θ − θ∗)
2
+ 1, θ ≤ θ∗

1, θ > θ∗ (A4)  

where θ∗is a threshold value, set at 0.6. The sensitivity parameter q ranges from q = (β0 − 1)/(θ∗ − θ0)
2, with β0 ≡ β(θ = 0). β0 is a function of the 

mean aridity: β0 = âθ + b̂θ (ET /PET). âθ and ̂bθ are calibrated parameters, set to 0 and 0.733, respectively. ET/PET is an estimate of the average ratio 
of actual to potential evapotranspiration. The average ET comes from mean flux observation in the site-scale experiments, and GLDAS in the basin- and 
global-scale experiments. PET is calculated using the Priestley-Taylor equation (Priestley and Taylor, 1972). We calculated this basic information from 
the GLDAS product. 
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