5 research outputs found

    Effect of the acid environment on the electrochemical behaviour of 1045 steel reinforced cement

    Get PDF
    External corrosion is one of the most common causes of oilwell casing failure. Hostile environments can be due to acidizing treatments. Although it is common to add corrosion inhibitors and oxygen scavengers in acidic solutions to control external casing corrosion, their real efficiency is unknown yet. Therefore, it is important to establish how aggressive to steel are the different hostile environments to help decide which acidic systems can be used. A comparative evaluation of the corrosion of steel immersed in hardened cement slurries submitted to commonly acidizing agents is suggested. The performance of Special Class Portland Cement Slurries reinforced with polished SAE 1045 steel was evaluated by electrochemical measurements as a function of time. Open circuit potential, polarization curves and electrochemical impedance spectroscopy were studied. 15.0 wt% HCl, 12.0 wt% HCl + 3.0 wt% HF (regular mud acid), 10.0 wt% HAc + 1.5 wt% HF and a simulated hardened cement slurry pore solution were used as electrolytes. The most aggressive acid solution to plain Portland hardened cement slurries was the regular mud acid. 10.0 wt% HAc + 1.5 wt% HF electrolytes were the least aggressive ones, showing open circuit potentials around +250 mV compared to -130 mV of the simulated hardened cement slurry pore solution after the first 24 hours of immersion. This behavior was observed during two months at least. Similar corrosion rates were shown between both electrolytes, around 0.01 μA.cm-2. Total impedance values, insipient arcs and large polarization resistance capacitive arcs on the Nyquist plots, indicating passivity process, confirmed the behaviour of the system in the 10.0 wt% HAc + 1.5 wt% HF electrolyte.The authors acknowledge FACEPE and PRH30/ANP/MCTPETROBRAS for the financial support

    Concretos autoadensáveis com cinzas ricas em cálcio como fíler alternativo e materiais secos aquecidos para simular mistura sob clima quente

    No full text
    Algaroba wood (Prosopis juliflora) is commonly used as energy source in the northeast region of Brazil and India, generating rich-calcium carbonate (CaCO3) ashes as a promising alternative limestone filler. Moreover, concreting in hot climates (for example, in tropical regions) can affect its fresh state conditions owing to the evaporation of the mixing water. Thus, Self-Compacting Concretes (SCCs) incorporating Algaroba ashes were produced using heated dry materials (80 ± 2 oC) to simulate hot weather mixing (on site, 50 ± 2 oC). In order to simulate the hot weather conditions on site for subsequent control tests over time (in the laboratory), the specimens were cured in water at 20 ± 2 oC. The self-compacting ability at the end of mixing was kept constant by extra water addition or superplasticizer overdosing. The partial replacement of 50% of natural lime filler by calcium-rich ash preserved the compressive strength and permeability of mixtures with 100% of limestone filler. Using 50% ash also demanded less water and superplasticizer when submitted to the simulated hot weather mixing.A madeira de Algaroba (Prosopis juliflora) é comumente usada na região nordeste do Brasil e na Índia como matriz energética, gerando cinzas ricas em carbonato de cálcio (CaCO3), promissores fíleres calcários alternativos. Adicionalmente, concretar em climas quentes (por exemplo, em regiões tropicais) pode afetar o estado fresco devido à evaporação da água de mistura. Concretos Auto Adensáveis (CAAs) incorporando cinzas de Algaroba foram produzidos usando materiais secos aquecidos (80 ± 2 oC) para simular mistura sob clima quente (em obra, 50 ± 2 oC). A fim de simular as condições de clima quente em obra para posterior teste de controle ao longo do tempo (em laboratório), as amostras foram curadas em água a 20 ± 2 oC. A auto-adensabilidade foi mantida constante ao final das misturas pela adição de água extra ou superdosagem de superplastificante. A substituição parcial de 50% do fíler calcário por cinzas ricas em cálcio preservou a resistências à compressão e permeabilidade das misturas com 100% de fíler calcário. O uso de 50% de cinza também demandou menos água e superplastificante em condição simulada de mistura sob clima quente

    Seminário de Dissertação (2024)

    No full text
    Página da disciplina de Seminário de Dissertação (MPPP, UFPE, 2022) Lista de participantes == https://docs.google.com/spreadsheets/d/1mrULe1y04yPxHUBaF50jhaM1OY8QYJ3zva4N4yvm198/edit#gid=

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora
    corecore