16 research outputs found

    Phonons and Hybrid Modes in the High and Low Temperature Far Infrared Dynamics of Hexagonal TmMnO3

    Get PDF
    We report on TmMnO3 far infrared emissivity and reflectivity spectra from 1910 K to 4 K. At the highest temperature the number of infrared bands is lower than that predicted for centrosymmetric P63/mmc (D6h4) (Z=2) space group due high temperature anharmonicity and possible defect induced bitetrahedra misalignments. On cooling, at ~1600 K TmMnO3 goes from non-polar to an antiferroelectric-ferroelectric polar phase reaching the ferroelectric onset at the ~700 K. The 300 K reflectivity is fitted using 19 oscillators and this number of phonons is maintained down to 4 K. A weak phonon anomaly in the band profile at 217 cm-1 (4 K) suggests subtle Rare Earth magnetoelectric couplings at ~TN and below. A low energy collective excitation is identified as a THz instability associated with room temperature eg electrons in a d-orbital fluctuating environment. It condenses into two modes that emerge pinned to the E-type antiferromagmetic order hardening simultaneously down to 4 K. They obey power laws with TN as the critical temperature and match known zone center magnons. The one peaking at 26 cm-1, with critical exponent \b{eta}=0.42 as for antiferromagnetic order in a hexagonal lattice, is dependent on the Rare Earth. The band at ~50 cm-1, with \b{eta}=0.25, splits at ~TN into two peaks. The weaker band of the two is assimilated to the upper branch of gap opening in the transverse acoustical (TA) phonon branch crossing the magnetic dispersion found in YMnO3. (Petit et al, 2007 PRL 99, 266604). The stronger second at ~36 cm-1 corresponds to the lower branch of the TA gap. We assign both excitations as zone center magnetoelectric hybrid quasiparticles concluding that in NdMnO3 perovskite the equivalent picture corresponds to an instability which may be driven by an external field to transform NdMnO3 into a multiferroic compound by perturbation enhancing the TA phonon-magnetic correlation.Comment: 39 pages, 9 Figure

    High Temperature Far Infrared Dynamics of Orthorhombic NdMnO3: Emissivity and Reflectivity

    Get PDF
    We report on near normal far- and mid-infrared emission and reflectivity of NdMnO3 perovskite from room temperature to sample decomposition above 1800 K. At 300 K the number infrared active phonons is in close agreement with the 25 calculated for the orthorhombic D2h16-Pbnm (Z=4) space group. Their number gradually decreases as we approach the temperature of orbital disorder at ~1023 K where the orthorhombic O' lower temperature cooperative phase coexists with the cubic orthorhombic O. At above ~1200 K, the three infrared active phonons coincide with the expected for cubic Pm-3m (Z=1) in the high temperature insulating regime. Heating samples in dry air triggers double exchange conductivity by Mn3+ and Mn4+ ions and a small polaron mid-infrared band. Fits to the optical conductivity single out the octahedral antisymmetric and symmetric vibrational modes as main phonons in the electron-phonon interactions at 875 K. For 1745 K, it is enough to consider the symmetric stretching internal mode. An overdamped defect induced Drude component is clearly outlined at the highest temperatures. We conclude that Rare Earth manganites eg electrons are prone to spin, charge, orbital, and lattice couplings in an intrinsic orbital distorted perovskite lattice favoring embryonic low energy collective excitations.Comment: 32 pages with 5 figure

    Reflectividad infrarroja de SrRuO₃

    Get PDF
    En este trabajo presentamos los espectros de reflectividad infrarroja a temperatura ambiente y a 80K piara la perovskita distorsionada SrRuO₃. Con las relaciones de Krammers-Kronig calculamos las funciones ópticas y reconstruimos el espectro de reflectividad con un modelo basado en la generalización de la relación de Lyddane- Sachs-Teller y el modelo de Drude. Con estos datos calculamos el número de portadores, la movilidad efectiva y la conductividad óptica, comparando nuestros resultados con los conocidos para diferentes compuestos.Centro de Química Inorgánic

    Electron Dynamics in Films Made of Transition Metal Nanograins Embedded in SiO2:Infrared Reflectivity and Nanoplasma Infrared Resonance

    Get PDF
    We report on near normal infrared reflectivity spectra of ~550 nm thick films made of cosputtered transition metal nanograins and SiO2 in a wide range of metal fractions. Co0.85(SiO2)0.15,with conductivity well above the percolation threshold has a frequency and temperature behavior according to what it is find in conducting metal oxides. The electron scattering rate displays an unique relaxation time characteristic of single type of carriers experiencing strong electron-phonon interactions. Using small polaron fits we identify those phonons as glass vibrational modes. Ni0.61(SiO2)0.39, with a metal fraction closer to the percolation threshold, undergoes a metal-non metal transition at ~77 K. Here, as it is suggested by the scattering rate nearly quadratic dependence, we broadly identify two relaxation times (two carrier contributions) associated to a Drude mode and a mid-infrared overdamped band, respectively. Disorder induced, the mid-infrared contribution drives the phase transition by thermal electron localization. Co0.51(SiO2)0.49 has the reflectivity of an insulator with a distinctive band at ~1450cm\^{-1} originating in electron promotion, localization, and defect induced polaron formation. Angle dependent oblique reflectivity of globally insulating Co0.38(SiO2)0.62, Fe0.34(SiO2)0.66, and Ni0.28(SiO2)0.72, reveals a remarkable resonance at that band threshold. We understand this as due to the excitation by normal to the film electric fields of defect localized electrons in the metallic nanoparticle

    Collective Phase-like Mode and the Role of Lattice Distortions at TN~TC in RMn2O5 (R= Pr, Sm, Gd, Tb, Bi)

    Full text link
    We report on electronic collective excitations in RMn2O5 (R= Pr, Sm, Gd, Tb) showing condensation starting at and below TN\simTC\sim40-50 K. Its origin is understood as partial delocalized eg electron orbitals in the Jahn-Teller distortion of the pyramids dimmer with strong hybridized Mn3+-O bonds. Our local probes, Raman, infrared, and X-ray absorption, back the conclusion by which there is no structural phase transition at TN\simTC. Ferroelectricity is magnetically assisted by electron localization triggering lattice polarizability by unscreening. We have also found phonon hardening as the rare earth is sequentially replaced. This is understood as consequence of lanthanide contraction. It is suggested that partially f-electron screened Rare Earth nuclei might be introducing a perturbation to eg electrons prone to delocalize as the superexchange interaction takes place.Comment: Journal of Physics Cond. Matter April 12, 2012. In pres

    Stability of the Ni sites across the pressure-induced metallization in YNiO3

    Full text link
    The local environment of nickel atoms in Y NiO3 across the pressure- induced insulator to metal (IM) transition was studied using X-ray absorption spectroscopy (XAS) supported by ab initio calculations. The monotonic contraction of the NiO6 units under applied pressure observed up to 13 GPa, stops in a limited pressure domain around 14 GPa, before resuming above 16 GPa. In this narrow pressure range, crystallographic modifications basically occur in the medium/long range, not in the NiO6 octahedron, whereas the evolution of the near-edge XAS features can be associated to metallization. Ab initio calculations show that these features are related to medium range order, provided that the Ni-O-Ni angle enables a proper overlap of the Ni eg and O 2p orbitals. Metallization is then not directly related to modifications in the average local geometry of the NiO6 units but more likely to an inter-octahedra rearrangement. These outcomes provides evidences of the bandwidth driven nature of the IM transition.Comment: 6 pages with figure

    Raman and infrared spectroscopy of Sr2B′UO6 (B′ = Ni; Co) double perovskites

    Get PDF
    Temperature dependent normal modes and lattice thermal expansion of Sr 2B′UO6 (B′ = Ni, Co) double perovskites were investigated by Raman/infrared spectroscopies and synchrotron X-ray diffraction, respectively. Monoclinic crystal structures with space group P21/n were confirmed for both compounds, with no clear structural phase transition between 10 and 400 K. As predicted for this structure, the first-order Raman and infrared spectra show a plethora of active modes. In addition, the Raman spectra reveal an enhancement of the integrated area of an oxygen stretching mode, which is also observed in higher-order Raman modes, and an anomalous softening of ∼1 cm-1 upon cooling below T* ∼ 300 K. In contrast, the infrared spectra show conventional temperature dependence. The band profile phonon anomalies are possibly related to an unspecified electronic property of Sr2B′UO6 (B′ = Ni, Co).Centro de Química Inorgánic

    Raman and infrared spectroscopy of Sr2B′UO6 (B′ = Ni; Co) double perovskites

    Get PDF
    Temperature dependent normal modes and lattice thermal expansion of Sr 2B′UO6 (B′ = Ni, Co) double perovskites were investigated by Raman/infrared spectroscopies and synchrotron X-ray diffraction, respectively. Monoclinic crystal structures with space group P21/n were confirmed for both compounds, with no clear structural phase transition between 10 and 400 K. As predicted for this structure, the first-order Raman and infrared spectra show a plethora of active modes. In addition, the Raman spectra reveal an enhancement of the integrated area of an oxygen stretching mode, which is also observed in higher-order Raman modes, and an anomalous softening of ∼1 cm-1 upon cooling below T* ∼ 300 K. In contrast, the infrared spectra show conventional temperature dependence. The band profile phonon anomalies are possibly related to an unspecified electronic property of Sr2B′UO6 (B′ = Ni, Co).Centro de Química Inorgánic

    High Temperature Emissivity, Reflectivity, and X-ray absorption of BiFeO3

    Get PDF
    We report on the lattice evolution of BiFeO3 as function of temperature using far infrared emissivity, reflectivity, and X-ray absorption local structure. A power law fit to the lowest frequency soft phonon in the magnetic ordered phase yields an exponent {\beta}=0.25 as for a tricritical point. At about 200 K below TN~640 K it ceases softening as consequence of BiFeO3 metastability. We identified this temperature as corresponding to a crossover transition to an order-disorder regime. Above ~700 K strong band overlapping, merging, and smearing of modes are consequence of thermal fluctuations and chemical disorder. Vibrational modes show band splits in the ferroelectric phase as emerging from triple degenerated species as from a paraelectric cubic phase above TC~1090 K. Temperature dependent X-ray absorption near edge structure (XANES) at the Fe K-edge shows that lower temperature Fe3+ turns into Fe2+. While this matches the FeO w\"ustite XANES profile, the Bi LIII-edge downshift suggests a high temperature very complex bond configuration at the distorted A perovskite site. Overall, our local structural measurements reveal high temperature defect-induced irreversible lattice changes, below, and above the ferroelectric transition, in an environment lacking of long-range coherence. We did not find an insulator to metal transition prior to melting.Comment: Accepted for publicatio
    corecore