12 research outputs found

    Atorvastatin prevents Plasmodium falciparum cytoadherence and endothelial damage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The adhesion of <it>Plasmodium falciparum </it>parasitized red blood cell (PRBC) to human endothelial cells (EC) induces inflammatory processes, coagulation cascades, oxidative stress and apoptosis. These pathological processes are suspected to be responsible for the blood-brain-barrier and other organs' endothelial dysfunctions observed in fatal cases of malaria. Atorvastatin, a drug that belongs to the lowering cholesterol molecule family of statins, has been shown to ameliorate endothelial functions and is widely used in patients with cardiovascular disorders.</p> <p>Methods</p> <p>The effect of this compound on PRBC induced endothelial impairments was assessed using endothelial co-culture models.</p> <p>Results</p> <p>Atorvastatin pre-treatment of EC was found to reduce the expression of adhesion molecules and <it>P. falciparum </it>cytoadherence, to protect cells against PRBC-induced apoptosis and to enhance endothelial monolayer integrity during co-incubation with parasites.</p> <p>Conclusions</p> <p>These results might suggest a potential interest use of atorvastatin as a protective treatment to interfere with the pathophysiological cascades leading to severe malaria.</p

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Comparison of apoptosis in human primary pulmonary endothelial cells and a brain microvascular endothelial cell line co-cultured with Plasmodium falciparum field isolates

    No full text
    Background: Plasmodium falciparum infection can progress unpredictably to severe forms including respiratory distress and cerebral malaria. The mechanisms underlying the variable natural course of malaria remain elusive. Methods: The cerebral microvascular endothelial cells-D3 and lung endothelial cells both from human were cultured separately and challenged with P. falciparum field isolates taken directly from malaria patients or 3D7 strain (in vitro maintained culture). The capacity of these P. falciparum isolates to induce endothelial cell apoptosis via cytoadherence or not was then assessed. Results: Overall, 27 P. falciparum isolates were collected from patients with uncomplicated malaria (n = 25) or severe malaria (n = 2). About half the isolates (n = 17) were able to bind brain endothelial cells (12 isolates, 44%) or lung endothelial cells (17 isolates, 63%) or both (12 isolates, 44%). Sixteen (59%) of the 27 isolates were apoptogenic for brain and/or lung endothelial cells. The apoptosis stimulus could be cytoadherence, direct cell-cell contact without cytoadherence, or diffusible soluble factors. While some of the apoptogenic isolates used two stimuli (direct contact with or without cytoadherence, plus soluble factors) to induce apoptosis, others used only one. Among the 16 apoptogenic isolates, eight specifically targeted brain endothelial cells, one lung endothelial cells, and seven both. Conclusion: These results indicate that the brain microvascular cell line was more susceptible to apoptosis triggered by P. falciparum than the primary pulmonary endothelial cells and may have relevance to host-parasite interaction

    Identification of an unclassified Paramyxovirus in Coleura afra : a potential case of host specificity

    No full text
    Bats are known to harbor multiple paramyxoviruses. Despite the creation of two new genera, Aquaparamyxovirus and Ferlavirus, to accommodate this increasing diversity, several recently isolated or characterized viruses remain unclassified beyond the subfamily level. In the present study, among 985 bats belonging to 6 species sampled in the Belinga caves of Gabon, RNA of an unclassified paramyxovirus (Belinga bat virus, BelPV) was discovered in 14 African sheathtailed bats (Coleura afra), one of which exhibited several hemorrhagic lesions at necropsy, and viral sequence was obtained in two animals. Phylogenetically, BelPV is related to J virus and Beilong virus (BeiPV), two other unclassified paramyxoviruses isolated from rodents. In the diseased BelPV-infected C. afra individual, high viral load was detected in the heart, and the lesions were consistent with those reported in wild rodents and mice experimentally infected by J virus. BelPV was not detected in other tested bat species sharing the same roosting sites and living in very close proximity with C. afra in the two caves sampled, suggesting that this virus may be host-specific for C. afra. The mode of transmission of this paramyxovirus in bat populations remains to be discovered

    Evidence of Lymphocytic Choriomeningitis Virus (LCMV) in domestic mice in Gabon : risk of emergence of LCMV encephalitis in Central Africa

    No full text
    Lymphocytic choriomeningitis virus (LCMV) can cause acute fatal disease on all continents but was never detected in Africa. We report the first detection of LCMV RNA in a common European house mouse (Mus musculus domesticus) in Africa. Phylogenetic analyses show a close relationship with North American strains. These findings suggest that there is a risk of the appearance of LCMV acute encephalitis cases. This is a perfect example of virus dissemination by its natural host that may have dramatic public health consequences

    Habitat mosaic as a driver of the resilience of native species: The case of the assemblage of small mammals from the city of Franceville, Gabon

    No full text
    International audienceRodents (Rodentia) are the most abundant and diverse order of mammals, present in all habitats, including urban areas. The traffic linked to globalisation has favoured their involvement in biological invasions that have an impact on local biodiversity, the economy and human health. In Franceville, Gabon, little is known about the rodent community. We therefore studied the composition and distribution of rodents along a gradient highlighting the heterogeneity of the city's landscape. The three habitat types studied showed no difference in small mammal abundance, while the diversity index was higher in the vegetated habitat (SDI = 0.73) compared to the outdoor (SDI = 0.71) and indoor (SDI = 0.45) habitats. Our work shows the importance of vegetal remnants in the city for the maintenance of native species. It also highlights the impact of introduced species on small mammal assemblages and the need for management to reduce the factors of their proliferation

    Bartonella gabonensis sp. nov., a new bartonella species from savannah rodent Lophuromys sp. in Franceville, Gabon

    Get PDF
    International audienceWe describe a new strain named Bartonella gabonensis sp. nov. strain 669T (CSURB1083). The entire genome of this strain is described here. It was isolated from a savannah rodent, a brush-furred rat (Lophuromys sp.), trapped the city of Franceville in Gabon, in Central Africa. B. gabonensis is an aerobic, rod-shaped and Gram-negative bacterium. On the basis of the organism's features, and following a taxonogenomic approach, we propose the creation of the species Bartonella gabonensis sp. nov

    Serological evidence for the circulation of Rift Valley Fever Virus in domestic small ruminants in Southern Gabon

    No full text
    Rift Valley fever (RVF) is a zoonotic disease, which caused several epidemics in humans in many countries of Africa. Using an inhibition enzyme-linked immunosorbent assay (ELISA), real-time reverse transcription PCR, and nested one-step reverse transcription PCR, we conducted a cross-sectional study in populations of sheep and goats from the Mongo County in 2014 to determine the circulation of the Rift Valley fever virus (RVFV) in small ruminants from this area. From a total of 201 small ruminants (95 sheep and 106 goats), the overall IgG seroprevalence against the RVFV was 6.47% (13/201). No RVFV RNA was detected in the animal plasmas. Logistic regression analysis showed that age, species, sex, and locality were not the significant risk factors. The findings of this study highlight the risk of RVF for domestic ruminants bred in this region and for the human rural population living in contact with these animals and they emphasize the need to develop adequate control measures to limit this threat

    Genetic diversity and ecology of coronaviruses hosted by cave-dwelling bats in Gabon

    No full text
    Little research on coronaviruses has been conducted on wild animals in Africa. Here, we screened a wide range of wild animals collected in six provinces and five caves of Gabon between 2009 and 2015. We collected a total of 1867 animal samples (cave-dwelling bats, rodents, non-human primates and other wild animals). We explored the diversity of CoVs and determined the factors driving the infection of CoVs in wild animals. Based on a nested reverse transcription-polymerase chain reaction, only bats, belonging to the Hipposideros gigas (4/156), Hipposideros cf. ruber (13/262) and Miniopterus inflatus (1/249) species, were found infected with CoVs. We identified alphacoronaviruses in H. gigas and H. cf. ruber and betacoronaviruses in H. gigas. All Alphacoronavirus sequences grouped with Human coronavirus 229E (HCoV-229E). Ecological analyses revealed that CoV infection was significantly found in July and October in H. gigas and in October and November in H. cf ruber. The prevalence in the Faucon cave was significantly higher. Our findings suggest that insectivorous bats harbor potentially zoonotic CoVs; highlight a probable seasonality of the infection in cave-dwelling bats from the North-East of Gabon and pointed to an association between the disturbance of the bats' habitat by human activities and CoV infection
    corecore