47 research outputs found

    Transient Calcium and Dopamine Increase PKA Activity and DARPP-32 Phosphorylation

    Get PDF
    Reinforcement learning theorizes that strengthening of synaptic connections in medium spiny neurons of the striatum occurs when glutamatergic input (from cortex) and dopaminergic input (from substantia nigra) are received simultaneously. Subsequent to learning, medium spiny neurons with strengthened synapses are more likely to fire in response to cortical input alone. This synaptic plasticity is produced by phosphorylation of AMPA receptors, caused by phosphorylation of various signalling molecules. A key signalling molecule is the phosphoprotein DARPP-32, highly expressed in striatal medium spiny neurons. DARPP-32 is regulated by several neurotransmitters through a complex network of intracellular signalling pathways involving cAMP (increased through dopamine stimulation) and calcium (increased through glutamate stimulation). Since DARPP-32 controls several kinases and phosphatases involved in striatal synaptic plasticity, understanding the interactions between cAMP and calcium, in particular the effect of transient stimuli on DARPP-32 phosphorylation, has major implications for understanding reinforcement learning. We developed a computer model of the biochemical reaction pathways involved in the phosphorylation of DARPP-32 on Thr34 and Thr75. Ordinary differential equations describing the biochemical reactions were implemented in a single compartment model using the software XPPAUT. Reaction rate constants were obtained from the biochemical literature. The first set of simulations using sustained elevations of dopamine and calcium produced phosphorylation levels of DARPP-32 similar to that measured experimentally, thereby validating the model. The second set of simulations, using the validated model, showed that transient dopamine elevations increased the phosphorylation of Thr34 as expected, but transient calcium elevations also increased the phosphorylation of Thr34, contrary to what is believed. When transient calcium and dopamine stimuli were paired, PKA activation and Thr34 phosphorylation increased compared with dopamine alone. This result, which is robust to variation in model parameters, supports reinforcement learning theories in which activity-dependent long-term synaptic plasticity requires paired glutamate and dopamine inputs

    Antimicrobial Susceptibility of Stenotrophomonas maltophilia Isolates from a Korean Tertiary Care Hospital

    Get PDF
    We determined the antimicrobial susceptibility of 90 clinical isolates of Stenotrophomonas maltophilia collected in 2009 at a tertiary care hospital in Korea. Trimethoprim-sulfamethoxazole, minocycline, and levofloxacin were active against most of the isolates tested. Moxifloxacin and tigecycline were also active and hold promise as therapeutic options for S. maltophilia infections

    Colocalization of Protein Kinase A with Adenylyl Cyclase Enhances Protein Kinase A Activity during Induction of Long-Lasting Long-Term-Potentiation

    Get PDF
    The ability of neurons to differentially respond to specific temporal and spatial input patterns underlies information storage in neural circuits. One means of achieving spatial specificity is to restrict signaling molecules to particular subcellular compartments using anchoring molecules such as A-Kinase Anchoring Proteins (AKAPs). Disruption of protein kinase A (PKA) anchoring to AKAPs impairs a PKA-dependent form of long term potentiation (LTP) in the hippocampus. To investigate the role of localized PKA signaling in LTP, we developed a stochastic reaction-diffusion model of the signaling pathways leading to PKA activation in CA1 pyramidal neurons. Simulations investigated whether the role of anchoring is to locate kinases near molecules that activate them, or near their target molecules. The results show that anchoring PKA with adenylyl cyclase (which produces cAMP that activates PKA) produces significantly greater PKA activity, and phosphorylation of both inhibitor-1 and AMPA receptor GluR1 subunit on S845, than when PKA is anchored apart from adenylyl cyclase. The spatial microdomain of cAMP was smaller than that of PKA suggesting that anchoring PKA near its source of cAMP is critical because inactivation by phosphodiesterase limits diffusion of cAMP. The prediction that the role of anchoring is to colocalize PKA near adenylyl cyclase was confirmed by experimentally rescuing the deficit in LTP produced by disruption of PKA anchoring using phosphodiesterase inhibitors. Additional experiments confirm the model prediction that disruption of anchoring impairs S845 phosphorylation produced by forskolin-induced synaptic potentiation. Collectively, these results show that locating PKA near adenylyl cyclase is a critical function of anchoring

    Subcellular Location of PKA Controls Striatal Plasticity: Stochastic Simulations in Spiny Dendrites

    Get PDF
    Dopamine release in the striatum has been implicated in various forms of reward dependent learning. Dopamine leads to production of cAMP and activation of protein kinase A (PKA), which are involved in striatal synaptic plasticity and learning. PKA and its protein targets are not diffusely located throughout the neuron, but are confined to various subcellular compartments by anchoring molecules such as A-Kinase Anchoring Proteins (AKAPs). Experiments have shown that blocking the interaction of PKA with AKAPs disrupts its subcellular location and prevents LTP in the hippocampus and striatum; however, these experiments have not revealed whether the critical function of anchoring is to locate PKA near the cAMP that activates it or near its targets, such as AMPA receptors located in the post-synaptic density. We have developed a large scale stochastic reaction-diffusion model of signaling pathways in a medium spiny projection neuron dendrite with spines, based on published biochemical measurements, to investigate this question and to evaluate whether dopamine signaling exhibits spatial specificity post-synaptically. The model was stimulated with dopamine pulses mimicking those recorded in response to reward. Simulations show that PKA colocalization with adenylate cyclase, either in the spine head or in the dendrite, leads to greater phosphorylation of DARPP-32 Thr34 and AMPA receptor GluA1 Ser845 than when PKA is anchored away from adenylate cyclase. Simulations further demonstrate that though cAMP exhibits a strong spatial gradient, diffusible DARPP-32 facilitates the spread of PKA activity, suggesting that additional inactivation mechanisms are required to produce spatial specificity of PKA activity

    Update on the Taxonomy of Clinically Important Anaerobic Bacteria

    No full text
    The taxonomy of bacteria in the field of clinical microbiology is in a state of constant flux. A large-scale revamping of the classification and nomenclature of anaerobic bacteria has taken place over the past few decades, mainly due to advances in molecular techniques such as 16S rRNA and whole genome sequencing (WGS). New genera and species have been added, and existing genera and species have been reclassified or renamed. A major role of the clinical microbiological laboratories (CMLs) is the accurate identification (ID) and appropriate antimicrobial susceptibility testing (AST) for clinically important bacteria, and rapid reporting and communication of the same to the clinician. Taxonomic changes in anaerobic bacteria could potentially affect the choice of appropriate antimicrobial agents and the antimicrobial breakpoints to use. Furthermore, current taxonomy is important to prevent treatment failures of emerging pathogenic anaerobes with antimicrobial resistance. Therefore, CMLs should periodically update themselves on the changes in the taxonomy of anaerobic bacteria and suitably inform clinicians of these changes for optimum patient care. This article presents an update on the taxonomy of clinically important anaerobic bacteria, together with the previous names or synonyms. This taxonomy update can help guide antimicrobial therapy for anaerobic bacterial infections and prevent treatment failure and can be a useful tool for both CMLs and clinicians

    Temporal sensitivity of protein kinase A activation in late-phase long term potentiation

    Get PDF
    Protein kinases play critical roles in learning and memory and in long term potentiation (LTP), a form of synaptic plasticity. The induction of late-phase LTP (L-LTP) in the CA1 region of the hippocampus requires several kinases, including CaMKII and PKA, which are activated by calcium-dependent signaling processes and other intracellular signaling pathways. The requirement for PKA is limited to L-LTP induced using spaced stimuli, but not massed stimuli. To investigate this temporal sensitivity of PKA, a computational biochemical model of L-LTP induction in CA1 pyramidal neurons was developed. The model describes the interactions of calcium and cAMP signaling pathways and is based on published biochemical measurements of two key synaptic signaling molecules, PKA and CaMKII. The model is stimulated using four 100 Hz tetani separated by 3 sec (massed) or 300 sec (spaced), identical to experimental L-LTP induction protocols. Simulations show that spaced stimulation activates more PKA than massed stimulation, and makes a key experimental prediction, that L-LTP is PKA-dependent for intervals larger than 60 sec. Experimental measurements of L-LTP demonstrate that intervals of 80 sec, but not 40 sec, produce PKA-dependent L-LTP, thereby confirming the model prediction. Examination of CaMKII reveals that its temporal sensitivity is opposite that of PKA, suggesting that PKA is required after spaced stimulation to compensate for a decrease in CaMKII. In addition to explaining the temporal sensitivity of PKA, these simulations suggest that the use o

    Model of striatal medium spiny projection neuron dendrite with spines.

    No full text
    <p>A. Diagram of biochemical signaling pathways. Each arrow is modeled with one or more bimolecular or enzyme reactions. See text and <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002383#pcbi-1002383-t001" target="_blank">Table 1</a> for details. B. Morphology of dendrite with four spines, and location of calcium influx in the model. Subvolumes of height 0.12 µm adjacent to the top and bottom surface of the dendrite are considered submembrane subvolumes. Other dendritic subvolumes are part of the cytosol. Diffusion is two-dimensional in the dendrite and one-dimensional in the spine. C. Experimental Design: The role of anchoring is evaluated using four spatial variations in the location of adenylate cyclase and PKA. The adenylate cyclase-D1R complex (AC) is located either in the spine head or a focal dendritic submembrane area. Similarly, the PKA holoenzyme is located either in the spine head or the focal dendritic submembrane area. AMPA receptors containing GluA1 subunits are in the PSD compartment of the spine head for all cases.</p

    Dopamine gradients produce intracellular gradients of cAMP, but not PKA activity.

    No full text
    <p>(A) cAMP concentration versus time and distance from dopamine release site. (B) cAMP concentration, averaged from 50 to 150 sec, is well fit by single exponential decay. (C) phosphoThr34 DARPP-32 concentration versus time and distance from dopamine release site exhibits minimal spatial gradient. (D) Concentration of phosphoThr34 DARPP-32, averaged between 100 and 250 sec, exhibits a spatial gradient when diffusion of all DARPP-32 forms is zero (red), or diffusion of PKA bound DARPP-32 is zero (blue). Blocking the phosphoThr75-PKA interaction does not change the gradient that appears when diffusion of all DARPP-32 forms is zero (black). All three cases overlap and have the same decay space constant; thus, they are difficult to distinguish in the figure. The inset shows the fits alone, which also overlap. (E) Percent of GluA1 phosphorylated on Ser845, averaged between 100 and 250 sec, versus distance from dopamine release site. (F) Percent of GluA1 phosphorylated on Ser845, averaged between 100 and 250 sec, exhibits a spatial gradient when diffusion of the DARPP-32 forms is zero (red), or diffusion of PKA bound DARPP-32 is zero (blue). Blocking the phosphoThr75-PKA interaction does not change the gradient that appears when diffusion of all DARPP-32 forms is zero (black).</p
    corecore