9 research outputs found

    Synthesis of new pyridazino[4,5-b]indol-4-ones and pyridazin-3(2H)-one analogs as DYRK1A inhibitors

    Get PDF
    International audienceNew pyridazino[4,5-b]indol-4-ones and pyridazin-3(2H)-one analogs were synthesized and their inhibitory activities against DYRK1A, CDK5/p25, GSK3α/β and p110-α isoform of PI3K evaluated using harmine as reference. Both furan-2-yl 10 and pyridin-4-yl 19 from the two different series, exhibited submicromolar IC50 against DYRK1A with no activities against the three other kinases. In addition, compound 10 exhibited antiproliferative activities in the Huh-7, Caco2 and MDA-MB-231 cell lines

    Transcriptional Activation of REST by Sp1 in Huntington's Disease Models

    Get PDF
    In Huntington's disease (HD), mutant huntingtin (mHtt) disrupts the normal transcriptional program of disease neurons by altering the function of several gene expression regulators such as Sp1. REST (Repressor Element-1 Silencing Transcription Factor), a key regulator of neuronal differentiation, is also aberrantly activated in HD by a mechanism that remains unclear. Here, we show that the level of REST mRNA is increased in HD mice and in NG108 cells differentiated into neuronal-like cells and expressing a toxic mHtt fragment. Using luciferase reporter gene assay, we delimited the REST promoter regions essential for mHtt-mediated REST upregulation and found that they contain Sp factor binding sites. We provide evidence that Sp1 and Sp3 bind REST promoter and interplay to fine-tune REST transcription. In undifferentiated NG108 cells, Sp1 and Sp3 have antagonistic effect, Sp1 acting as an activator and Sp3 as a repressor. Upon neuronal differentiation, we show that the amount and ratio of Sp1/Sp3 proteins decline, as does REST expression, and that the transcriptional role of Sp3 shifts toward a weak activator. Therefore, our results provide new molecular information to the transcriptional regulation of REST during neuronal differentiation. Importantly, specific knockdown of Sp1 abolishes REST upregulation in NG108 neuronal-like cells expressing mHtt. Our data together with earlier reports suggest that mHtt triggers a pathogenic cascade involving Sp1 activation, which leads to REST upregulation and repression of neuronal genes

    Activation transcriptionnelle d'un répresseur de gènes neuronaux, NRSF, dans la maladie de Huntington (Identification des facteurs impliqués)

    No full text
    La maladie de Huntington (MH) est une maladie neurodégénérative due à une expansion anormale de trinucléotides CAG, codant pour une expansion de polyglutamine dans la protéine huntingtine (htt). Plusieurs mécanismes physiopathologiques ont été proposés, incluant la dérégulation de l expression des gènes. Parmi ces dérégulations, beaucoup de gènes codant pour des protéines essentielles à la morphologie et à la fonction des neurones sont réprimés. NRSF, un facteur de transcription qui réprime spécifiquement l expression de ces gènes, a une activité augmentée dans la MH.L objectif de ce travail est de comprendre les mécanismes conduisant à l activation de NRSF dans la MH. Ainsi, nous montrons dans un modèle cellulaire que l expression de la htt mutée conduit à une augmentation de l expression de NRSF associée à une activation du promoteur du gène. L exploration des mécanismes responsables de cette activation nous a permis d exclure le rôle de deux facteurs de transcription activés dans la MH: AP-1 et NF-KappaB. Finalement, nous mettons en évidence que le promoteur du gène Nrsf est régulé différentiellement par deux facteurs Sp: Sp1 qui est activateur transcriptionnel du gène et Sp3, un répresseur. L identification, pour la première fois, du rôle de ces facteurs dans la régulation transcriptionnelle du gène Nrsf, nous permet d explorer de nouveaux mécanismes par lesquels la htt mutée conduit à l activation du promoteur du gène Nrsf et ouvre de nombreuses perspectives pour comprendre la régulation de ce gène au cours de la différenciation neuronale ainsi que dans d autres pathologies telles que le cancer.Huntington s disease (HD) is a neurodegenerative disorder caused by an abnormal expansion of CAG trinucleotides, which code for polyglutamine expansions in the huntingtin (htt). Several physiopathological mechanisms have been proposed, including deregulated gene expression and can lead to the down-regulation of genes which are essential for neuronal morphology and function. NRSF, a transcription factor that plays a crucial role in controlling neuronal cell fate, by specifically inhibiting the expression of many neuronal genes, displays increased activity in HD which could explain the selective repression of neuronal genes.The goal of this work was to characterize the molecular mechanisms leading to NRSF activation in HD. In a cellular model, we show that the expression of mutant htt leads to increased NRSF expression by activating transcription from the NRSF promoter. We show that this transcriptional up-regulation does not involve two transcription factors known to be activated in HD: AP-1 and NF-KappaB. Finally, we demonstrate that Nrsf gene promoter is differentially regulated by two other transcription factors belonging to Sp family: Sp1 and Sp3, which act as transcriptional activator and repressor of the Nrsf gene promoter, respectively. Thus, we provide the first evidence that Sp factors regulate the transcriptional activity of Nrsf gene promoter. Our findings do not only allow the exploration of new mechanisms by which mutant htt activates the promoter of Nrsf gene, but they also open up fundamental new perspectives to understand the regulation of this gene, which is important during neuronal differentiation, and is deregulated in other disorders such as cancer.STRASBOURG-Sc. et Techniques (674822102) / SudocSudocFranceF

    Prospective study directed to the synthesis of unsymmetrical linked bis-5-arylidene rhodanine derivatives via “one-pot two steps” reactions under microwave irradiation with their antitumor activity

    No full text
    International audienceWe here report on the synthesis of new unsymmetrical linked bis-5-arylidene rhodanine derivatives with stereocontrolled Z-configuration. The 6 steps synthesis was achieved and the key steps are the construction of the two 5-arylidene rhodanine moieties using an “one-pot two-steps” method under microwave dielectric heating in a closed reactor. The intermediates 6, 7 and desired unsymmetrical compounds 9 have been also evaluated for their in vitro inhibition of cell proliferation (Huh7 D12, Caco2, MDA-MB 231, HCT116, and NCI-H727 tumoral cell lines). Two of all compounds have shown potent activity against Huh7 D12, Caco2, and MDA-MB 231

    Synthetic Development of New 3-(4-Arylmethylamino)butyl-5-arylidene-rhodanines under Microwave Irradiation and Their Effects on Tumor Cell Lines and against Protein Kinases

    No full text
    A new route to 3-(4-arylmethylamino)butyl-5-arylidene-2-thioxo-1,3-thiazolidine-4-one 9 was developed in six steps from commercial 1,4-diaminobutane 1 as starting material. The key step of this multi-step synthesis involved a solution phase “one-pot two-steps” approach assisted by microwave dielectric from N-(arylmethyl)butane-1,4-diamine hydrochloride 6a–f (as source of the first point diversity) and commercial bis-(carboxymethyl)-trithiocarbonate reagent 7 for construction of the rhodanine platform. This platform was immediately functionalized by Knoevenagel condensation under microwave irradiation with a series of aromatic aldehydes 3 as second point of diversity. These new compounds were prepared in moderate to good yields and the fourteen synthetic products 9a–n have been obtained with a Z-geometry about their exocyclic double bond. These new 5-arylidene rhodanines derivatives 9a–n were tested for their kinase inhibitory potencies against four protein kinases: Human cyclin-dependent kinase 5-p25, HsCDK5-p25; porcine Glycogen Synthase Kinase-3, GSK-3α/β; porcine Casein Kinase 1, SsCK1 and human HsHaspin. They have also been evaluated for their in vitro inhibition of cell proliferation (HuH7 D12, Caco 2, MDA-MB 231, HCT 116, PC3, NCI-H727, HaCat and fibroblasts). Among of all these compounds, 9j presented selective micromolar inhibition activity on SsCK1 and 9i exhibited antitumor activities in the HuH7 D12, MDA-MBD231 cell lines

    Novel optimization of valmerins (tetrahydropyrido[1,2-a]isoindolones) as potent dual CDK5/GSK3 inhibitors

    No full text
    International audienceAn efficient synthetic strategy able to modulate the structure of the tetrahydropyridine isoindolone (Valmerin) skeleton was developed. A library of more than 30 novel final structures was generated. Biological activities on CDK5 and GSK3 as well as cellular effects on cancer cell lines were measured for each novel compound. Additionally to support the SAR, a docking study was performed. A potent GSK3/CDK5 dual inhibitor (37, IC50 CDK5/GSK3 35/7 nM) was obtained. Best antiproliferative effects were obtained on lung and prostate cell lines with IC50 = 20 n

    Novel Tetrahydropyrido[1,2-a]isoindolone Derivatives (Valmerins): Potent Cyclin-Dependent Kinase/Glycogen Synthase Kinase 3 Inhibitors with Antiproliferative Activities and Antitumor Effects in Human Tumor Xenografts

    No full text
    International audienceThe development of CDK and GSK3 inhibitors has been regarded as a potential therapeutic approach, and a substantial number of diverse structures have been reported to inhibit CDKs and GSK-3β in recent years. Only a few molecules have gone through or are currently undergoing clinical trials as CDK and GSK inhibitors. In this paper, we prepared valmerins, a new family containing the tetrahydropyrido[1,2-a]isoindone core. The fused heterocycle was prepared with a straightforward synthesis that was functionalized by a (het)arylurea. Twelve valmerins inhibited the CDK5 and GSK3 with an IC50 < 100 nM. A semiquantitative kinase scoring was realized, and a cellular screening was done. At the end of our study, we investigated the in vivo potency of one valmerin. Mice exhibited good tolerance to our lead, which proved its efficacy and clearly blocked tumor growth. Valmerins appear also as good candidates for further development as anticancer agents
    corecore