3 research outputs found

    A method for measuring blood pressure and cardiorespiratory oscillations

    Get PDF
    Studies with magnetoencephalography (MEG) are still quite rarely combined simultaneously with methods that can provide a metabolic dimension to MEG investigations. In addition, continuous blood pressure measurements which comply with MEG compatibility requirements are lacking. For instance, by combining methods reflecting neurovascular status one could obtain more information on low frequency fluctuations that have recently gained increasing interest as a mediator of functional connectivity within brain networks. This paper presents a multimodal brain imaging setup, capable to non-invasively and continuously measure cerebral hemodynamic, cardiorespiratory and blood pressure oscillations simultaneously with MEG. In the setup, all methods apart from MEG rely on the use of fibre optics. In particular, we present a method for measuring of blood pressure and cardiorespiratory oscillations continuously with MEG. The potential of this type of multimodal setup for brain research is demonstrated by our preliminary studies on human, showing effects of mild hypercapnia, gathered simultaneously with the presented modalities

    Blood pressure wave propagation : a multisensor setup for cerebral autoregulation studies

    Get PDF
    Objective. Cerebral autoregulation is critically important to maintain proper brain perfusion and supply the brain with oxygenated blood. Non-invasive measures of blood pressure (BP) are critical in assessing cerebral autoregulation. Wave propagation velocity may be a useful technique to estimate BP but the effect of the location of the sensors on the readings has not been thoroughly examined. In this paper, we were interested in studying whether the propagation velocity of a pressure wave in the direction from the heart to the brain may differ compared with propagation from the heart to the periphery, as well as across different physiological tasks and/or health conditions. Using non-invasive sensors simultaneously placed at different locations of the human body allows for the study of how the propagation velocity of the pressure wave, based on pulse transit time (PTT), varies across different directions. Approach. We present a multi-sensor BP wave propagation measurement setup intended for cerebral autoregulation studies. The presented sensor setup consists of three sensors, one placed on each of the neck, chest and finger, allowing simultaneous measurement of changes in BP propagation velocity towards the brain and to the periphery. We show how commonly tested physiological tasks affect the relative changes of PTT and correlations with BP. Main results. We observed that during maximal blow, valsalva and breath hold breathing tasks, the relative changes of PTT were higher when PTT was measured in the direction from the heart to the brain than from the heart to the peripherals. In contrast, during a deep breathing task, the relative change in PTT from the heart to the brain was lower. In addition, we present a short literature review of the PTT methods used in brain research. Significance. These preliminary data suggest that the physiological task and direction of PTT measurement may affect relative PTT changes. The presented three-sensor setup provides an easy and neuroimaging compatible method for cerebral autoregulation studies by allowing measurement of BP wave propagation velocity towards the brain versus towards the periphery

    Real-time monitoring of human blood-brain barrier disruption

    Get PDF
    Chemotherapy aided by opening of the blood-brain barrier with intra-arterial infusion of hyperosmolar mannitol improves the outcome in primary central nervous system lymphoma. Proper opening of the blood-brain barrier is crucial for the treatment, yet there are no means available for its real-time monitoring. The intact blood-brain barrier maintains a mV-level electrical potential difference between blood and brain tissue, giving rise to a measurable electrical signal at the scalp. Therefore, we used direct-current electroencephalography ( DC-EEG) to characterize the spatiotemporal behavior of scalp-recorded slow electrical signals during blood-brain barrier opening. Nine anesthetized patients receiving chemotherapy were monitored continuously during 47 blood-brain barrier openings induced by carotid or vertebral artery mannitol infusion. Left or right carotid artery mannitol infusion generated a strongly lateralized DC-EEG response that began with a 2 min negative shift of up to 2000 mu V followed by a positive shift lasting up to 20 min above the infused carotid artery territory, whereas contralateral responses were of opposite polarity. Vertebral artery mannitol infusion gave rise to a minimally lateralized and more uniformly distributed slow negative response with a posterior-frontal gradient. Simultaneously performed near-infrared spectroscopy detected a multiphasic response beginning with mannitol-bolus induced dilution of blood and ending in a prolonged increase in the oxy/deoxyhemoglobin ratio. The pronounced DC-EEG shifts are readily accounted for by opening and sealing of the blood-brain barrier. These data show that DC-EEG is a promising real-time monitoring tool for bloodbrain barrier disruption augmented drug delivery.Peer reviewe
    corecore