164 research outputs found
Architecture Design and Implementation of the Metric First List Sphere Detector Algorithm
Soft-output detection of a multiple-input–multiple-output (MIMO) signal pose a significant challenge in future wireless systems. In this paper, we introduce a soft-output modified metric first (MMF)-LSD algorithm for MIMO detection. We design a scalable architecture and address a method to decrease memory requirements. We provide implementation results for a spatial multiplexing (SM) system with four transmitted streams and with 16- and 64-quadrature amplitude modulation (QAM) on a 0.18- m CMOS application specific integrated circuit
(ASIC) technology. The MFF-LSD implementation is more efficient than the depth first (DF) -LSD in the crucial low signal-to-noise rate (SNR)region and the detection rate of the 64-QAM implementation is 39.2 Mbps@26 db with 48.2 kGEs complexity
ARCHITECTURE DESIGN AND IMPLEMENTATION OF THE INCREASING RADIUS - LIST SPHERE DETECTOR ALGORITHM
A list sphere detector (LSD) is an enhancement of a sphere detector (SD) that can be used to approximate the optimal MAP detector. In this paper, we introduce a novel architecture for the increasing radius (IR)-LSD algorithm, which is based on the Dijkstra’s algorithm. The parallelism possibilities are introduced in the presented architecture, which is also scalable for different multiple-input multiple-output (MIMO) systems. The novel architecture is
implemented on a Virtex-IV field programmable gate array (FPGA) chip using high-level ANSI C++ language based Catapult C Synthesis tool from Mentor Graphics. The used word lengths, the latency of the design, and the required resources are presented and analyzed for 4 x 4 MIMO system with 16- quadrature amplitude modulation (QAM). The detector implementation achieves a maximum throughput of 12.1Mbps at high signal-to-noise ratio (SNR)
ASIC Implementation Comparison of SIC and LSD Receivers for MIMO-OFDM
MIMO-OFDM receivers with horizontal encoding are considered in this paper. The successive interference cancellation (SIC) algorithm is compared to the K-best list sphere detector (LSD). A modification to the K-best LSD algorithm is
introduced. The SIC and K-best LSD receivers are designed for a 2 x 2 antenna system with 64-quadrature amplitude modulation (QAM). The ASIC implementation results for both architectures are presented. The K-best LSD outperforms the SIC receiver in bad channel conditions but the SIC receiver performs better in
channels with less correlated MIMO streams. The latency of the K-best LSD is large due to the high modulation order and list size. The throughput of the SIC receiver is more than 6 times higher than that of the K-best LSD.TekesFinnish Funding Agency for Technology and InnovationNokiaTexas InstrumentsNokia Siemens Networks (NSN)Elekrobi
COMPARISON OF TWO NOVEL LIST SPHERE DETECTOR ALGORITHMS FOR MIMO-OFDM SYSTEMS
In this paper, the complexity and performance of two novel list sphere detector (LSD) algorithms are studied and evaluated in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system. The LSDs are based on the K-best and the Schnorr-Euchner enumeration (SEE) algorithms. The required list sizes for LSD algorithms are determined for a 2Ă—2 system with 4- quadrature amplitude modulation (QAM), 16-QAM, and 64-QAM. The complexity of the algorithms is compared by studying the number of visited nodes per received symbol vector by the algorithm in computer simulations. The SEE based LSD algorithm is found to be a less complex and a feasible choice for implementation compared to the K-best based LSD algorithm.ElekrobitNokiaTexas InstrumentsFinnish Funding Agency for Technology and InnovationTeke
Complexity Analysis of MMSE Detector Architectures for MIMO OFDM Systems
In this paper, a field programmable gate array (FPGA) implementation of a linear minimum mean square error (LMMSE) detector is considered for MIMO-OFDM systems. Two square root free algorithms based on QR decomposition (QRD) are introduced for the implementation of LMMSE detector. Both algorithms are based on QRD via Givens rotations, namely coordinate rotation digital computer (CORDIC) and squared
Givens rotation (SGR) algorithms. Linear and triangular shaped array architectures are considered to exploit the parallelism in the computations. An FPGA hardware implementation is presented and computational complexity of each implementation is evaluated and compared.ElekrobitNokiaTexas InstrumentsNational Technology Agency of FinlandTeke
The Effect of Preprocessing to the Complexity of List Sphere Detector Algorithms
A list sphere detector (LSD) is an enhancement of a sphere detector (SD) that can be used to approximate the soft output MAP detector used in the detection of the multiple-input multiple-output (MIMO) signals. The LSD algorithm executes
a tree search on the given lattice and returns a candidate list. The LSD algorithm complexity, i.e., the number of visited nodes in the search tree, can be decreased by applying proper ordering of the transmitted spatial streams in the detection. In this paper, we study the effect of two sophisticated preprocessing methods, the channel matrix column ordering based on Euclidean norm and the sorted QR decomposition (SQRD), to the performance and complexity of the LSD algorithms and compare them to the traditional QR decomposition (QRD). We show that the SQRD preprocessing is a simple way to decrease
complexity of the LSD and it decreases the number of visited nodes approximately 20 - 30% compared to the QRD which results in significant number of saved arithmetic operations in the LSD. We also show that the plain channel matrix column ordering is not feasible preprocessing method to be used with
LSD in highly correlated channel realization.ElekrobitNokiaNokia Siemens Networks (NSN)Texas InstrumentsFinnish Funding Agency for Technology and InnovationTeke
Performance and flow dynamics studies of polymeric optofluidic sers sensors
We present a polymer-based optofluidic surface enhanced Raman scattering chip for biomolecule detection, serving as a disposable sensorchoice with cost-effective production. The SERS substrate is fabricated by using industrial roll-to-roll UV-nanoimprinting equipment andintegrated with adhesive-based polymeric microfluidics. The functioning of the SERS detection on-chip is confirmed and the effect of thepolymer lid on the obtainable Raman spectra is analysed. Rhodamine 6G is used as a model analyte to demonstrate continuous flowmeasurements on a planar SERS substrate in a microchannel. The relation between the temporal response of the sensors and sample flowdynamics is studied with varied flow velocities, using SERS and fluorescence detection. The response time of the surface-dependent SERSsignal is longer than the response time of the fluorescence signal of the bulk flow. This observation revealed the effect of convection on thetemporal SERS responses at 25 ÎĽl/min to 1000 ÎĽl/min flow velocities. The diffusion of analyte molecules from the bulk concentration intothe sensing surface induces about a 40-second lag time in the SERS detection. This lag time, and its rising trend with slower flow velocities, has to be taken into account in future trials of the optofluidic SERS sensor, with active analyte binding on the sensing surface
An integrated Young interferometer based on UV-imprinted polymer waveguides for label-free biosensing applications
We demonstrate a polymer rib waveguide Young interferometer sensor fabricated by UV-imprinting. An inverted rib waveguide structure was utilized in order to simplify the fabrication process. In this configuration grooves are formed on the under cladding layer by UV-imprinting and core material is spin coated on top to fill the grooves. Glucose water solution was used to characterize the sensor response against ambient refractive index changes. The sensing responses correspond linearly with the refractive index change of glucose solutions with a detection limit of about 10-5. To verify the capability of the polymer sensor for biosensing, an immunoassay was performed with c-reactive protein (CRP) and human CRP specific antibody adsorbed on the waveguide surface as a receptor. The CRP solution in PBS (phosphate buffered saline) buffer with a concentration of 2 µg/ml (16 nM) resulted in an obvious response which was over a couple hundred times of the noise level. Based on these values, a detection limit of about 2.4 pg/mm2 was found for the surface sensing of molecular adsorption. With the proposed waveguide configuration, the fabrication of polymer sensors can be ultimately transferred to roll-to-roll mass production to produce low-cost disposable sensors
- …