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Abstract— In this paper, a field programmable gate array
(FPGA) implementation of a linear minimum mean square error
(LMMSE) detector is considered for MIMO-OFDM systems. Two
square root free algorithms based on QR decomposition (QRD)
are introduced for the implementation of LMMSE detector. Both
algorithms are based on QRD via Givens rotations, namely
coordinate rotation digital computer (CORDIC) and squared
Givens rotation (SGR) algorithms. Linear and triangular shaped
array architectures are considered to exploit the parallelism
in the computations. An FPGA hardware implementation is
presented and computational complexity of each implementation
is evaluated and compared.

I. INTRODUCTION

The ever increasing data rates in wireless communication
systems require the use of large bandwidths. Orthogonal
frequency division multiplexing (OFDM) [1] has become
a widely used technique to significantly reduce receiver
complexity in broadband wireless systems. Multiple-input
multiple-output (MIMO) channels offer improved capacity
and significant potential for improved reliability compared
to single antenna channels [2]. In the case of rich scatter-
ing environment layered space-time (LST) architectures [3],
[4] combined with channel coding represent pragmatic yet
powerful methods to increase the user data rate in systems
with multi-element antenna arrays (MEAs). MIMO techniques
in combination with OFDM technique (MIMO-OFDM) have
been identified as a promising approach for high spectral
efficiency wideband systems [5], [6].

The OFDM technique drastically simplifies receiver design
by decoupling the intersymbol interference, i.e., a frequency
selective, MIMO channel into a set of parallel flat fading
MIMO channels [6]. However, the reception of the MIMO-
OFDM signal has to be performed separately for each sub-
carrier. The optimal joint detection and decoding for LST
architectures would require the use of a maximum likelihood
(ML) algorithm. However, the computational complexity of
optimal ML decoding is beyond the limit of most systems, and,
thus, such an approach is not feasible. A suboptimal approach
is to use separate suboptimal solution steps for detection and
decoding, such as zero forcing (ZF) and minimum mean

square error (MMSE) criterion based methods [3]. In this
paper, a linear MMSE (LMMSE) based detector is considered
for MIMO-OFDM systems.

Several approaches exist to solve the matrix inversion re-
quired by the LMMSE detector [7], [8]. Often these methods
include operations such as square root and division which
are very complex in implementation and should, if possible,
be avoided. In this paper, two square root free methods are
introduced for the implementation of a LMMSE detector. Both
algorithms are based on QR decomposition (QRD) via Givens
rotations, namely the coordinate rotation digital computation
(CORDIC) [9] algorithm and the squared Givens rotation
(SGR) [10] algorithm.

Architectural design of matrix operations in the literature is
often based on systolic array structures with communicating
processing elements (PEs) [11], [12]. In this paper, detector
architectures are presented and compared for 2× 2 and 4× 4
antenna systems. A fast and parallel architecture is considered
for lower dimensional systems, and a less complex architecture
with easy scalability and time sharing PEs is considered
for larger systems. An FPGA hardware implementation is
presented and the computational complexity of each imple-
mentation is evaluated and compared.

The paper is organized as follows. The system model is pre-
sented in Section II. The LMMSE detector and the proposed
algorithms are introduced in Section III. The architectural de-
sign is presented in Section IV. The hardware implementation
in FPGA is presented in Section V. Conclusions are presented
in Section VI.

II. SYSTEM MODEL

An orthogonal frequency division multiplexing (OFDM)
based multiple antenna system with N transmit antennas and
M receive antennas is considered. A block diagram of the
system is shown in Figure 1. The received signal can be
expressed in terms of code symbol interval as

rp = Hpxp + ηp, p = 1, 2, . . . , P, (1)
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Fig. 1. Model of a MIMO system with N transmit and M receive antennas.

where P is the number of sub carriers and the received
signal vector, the transmit symbol vector and the noise vector
are defined in the frequency domain, respectively, as rp =
[rp,1, rp,2, . . . , rp,M ]T, xp = [xp,1, xp,2, . . . , xp,N ]T, ηp =
[ηp,1, ηp,2, . . . , ηp,M ]T. The elements of ηp are independent
and complex Gaussian with equal power real and imaginary
parts, i.e., ηp ∼ CN (0, N0IM ) and represent the frequency
domain thermal noise at the receiver. The channel matrix
Hp ∈ CM×N contains complex Gaussian fading coefficients
with unit variance.

The LMMSE based detector [3] minimizes the MSE be-
tween the transmitted signal vector xp and the soft output
vector of the LMMSE front end x̂p = WH

p rp. The design
criterion is

D2
LMMSE = min

W
E

{‖ xp − WHrp ‖2
F

}
, (2)

where Wp is the coefficient matrix, rp is the received
signal vector, and ‖A‖2

F = tr
(
AAH)

denotes a squared
Frobenius norm of the matrix A. By using the well known
Wiener solution [13], the LMMSE detector for MIMO-OFDM
can be then reduced to

Wp =
(
HpRxxHH

p + Rηη

)−1
HpRxx. (3)

Because the LMMSE detector has no prior knowledge of
the channel code structure, we assume Rxx = EsIN . The
thermal noise between receive antennae and subcarriers is also
considered to be uncorrelated, i.e., Rηη = N0IM . Then the
solution of (3) becomes

Wp =
(
HpH

H
p +

N0

Es
IM

)−1
Hp. (4)

III. LMMSE DETECTOR

The calculation of the LMMSE solution in (4) requires a
matrix inversion operation which is computationally a very
complex task. The solution for the LMMSE front-end coef-
ficients Wp can be seen as a common problem of solving a
linear system

AX = B (5)

where the matrix to be inverted, the desired LMMSE
coefficients and the right hand side of the equation are
defined, respectively, as A = HpH

H
p + N0

Es
IM ∈ CM×M ,

X = Wp ∈CM×N , B = Hp ∈CM×N .

In this paper, two square root free methods based on QRD
via Givens rotations are considered for the calculation of
LMMSE detector coefficients. The CORDIC algorithm is an
iterative algorithm introduced by Volder [9]. For an overview,
see [14]. The SGR [10] algorithm is developed based on the
work by Gentleman and Hammarling [10, references in]. Some
related work with SGR algorithm can be found, e.g., from [15],
[16], [17].

A. QRD with CORDIC Algorithm

In QRD a symmetric positive definite matrix A from (5)
can be factored as follows

A = QR (6)

where Q ∈ CM×M is unitary matrix, i.e., QHQ = QQH = I
and R ∈ CM×M is upper triangular matrix. The CORDIC
method provides pipelined implementations of the Givens
rotations for QRD using shifts and addition/subtractions
without the need to compute trigonometric functions or
square roots [9], [14]. Then (5) can be written as

QRX = B (7)

RX = QHB (8)

The matrix X can be solved from upper triangular system using
back substitution algorithm [7].

The two dimensional rotation step in Givens rotations
annihilates one element at a time from the given appropriate
pairs of rows. The rotation step is repeated several times for the
matrix A in (6) in order to construct R and Q. In one rotation
step the kth element of the row a = [0, . . . , 0, ak, . . . , aM ]
is to be annihilated by the rotation. Another row r =
[0, . . . , 0, rk, . . . , rM ] is applied in order to obtain QRD. For
real valued a and r the rotation is[

r̄
ā

]
=

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

] [
r
a

]

= cos(θ)
[

1 tan(θ)
−tan(θ) 1

] [
r
a

]
,

(9)

where θ is chosen so that āk = 0. If the angle of θ is such that
tan(θ) is a power of 2, the multiplication can be done using
only bit-shift operations. A general angle can be constructed
as a series of such angles with the tangent value equal to the
power of 2, and in practice the sum can be approximated with
imax values,

θ =
∞∑

i=0

ρiθi ≈
imax∑
i=0

ρiθi, (10)

where ρi = {−1, +1} and θi is constrained so that
tan(θi) = 2−i. [14]

The rotation in (9) is accomplished in a multistage manner,
by a series of micro rotations. The micro rotations result in
a series of intermediate results. The CORDIC implementation
with imax stages results from (9) as follows[

r[0]

a[0]

]
= κ

[
r
a

]
, (11)
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[
r[1]

a[1]

]
=

[
r[0]

a[0]

]
+ ρ020

[−a[0]

r[0]

]
, (12)

...[
r̄
ā

]
=

[
r[imax]

a[imax]

]
+ ρimax2−imax

[−a[imax]

r[imax]

]
, (13)

where κ =
∏imax

i=0 cos(θi) is a precomputed normalization
constant and the sign of the micro rotation is determined by
ρi = sgn(r[i−1]

k )sgn(a[i−1]
k ). [14]

The case of complex input data requires that the leading
elements of two processed rows are made real. Thus, the
typical step of the Givens approach can be replaced by a more
complicated step involving three sub-steps as follows[

r′

a′

]
=

[
e−jφr 0

0 e−jφa

] [
r
a

]
, (14)

[
r̄
ā

]
=

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

] [
r′

a′

]
, (15)

where φr = arctan Im(rk)
Re(rk) , φa = arctan Im(ak)

Re(ak) and

θ = arctana′
k

r′
k

. The combination of four CORDIC elements
can be applied to a supercell for complex data [14].

B. Squared Givens Rotations

The applied QR decomposition version in the SGR algo-
rithm is different from that in (6) used in the CORDIC model.
In the SGR algorithm, the factorization of a symmetric positive
definite matrix A from (5) is expressed as follows

A = QAD−2
R U (16)

where U = DRR ∈ CM×M is upper triangular matrix,
DR = diag(R) ∈ IRM×M , QA = QDR ∈CM×M . Matrix QA

consists of the orthogonalized columns of the matrix A. Now
(5) can be written as follows

QH
AAX = QH

AB

DRQHQDRD−2
R UX = QH

AB

UX = QH
AB

X = U−1QH
AB,

(17)

where X is the desired coefficient matrix. [10]
The SGR algorithm is used to determine QA and U from A

as in (16). The annihilation is done for one element at a time
from appropriate pairs of rows as in (9). In the SGR algorithm,
the selected pairs of rows a and r are first scaled as

u = rkr

a = w
1
2 v,

(18)

where rk is the kth element of r and given scalar w > 0. With
the scaling in (18) only half of the multiplications and no
square roots are required in the annihilation of ak compared

to normal Givens rotations [10]. The rotation performed by
the SGR algorithm is now[

ū
v̄

]
=

[
1 wvk

− vk

uk
1

] [
u
v

]
, (19)

and w̄ = wuk/ūk. The relationship to (9) holds with
representations

ū = r̄k r̄

ā = w̄
1
2 v̄.

(20)

In the end of the annihilation process of the matrix
A ∈ CM×M , we form an upper triangular matrix U, i.e.,
U = DRR = diag(R)R ∈CM×M . [10]

The desired coefficient matrix X is determined by calcu-
lating the inverse of matrix U and by multiplying both sides
by U−1. The inversion of upper triangular matrix U can be
performed using a stable algorithm listed in Table I [18]. It
should be noted that inversion of upper triangular matrix U can
also be calculated by back substitution algorithm. However,
the algorithm listed in Table I is less complex in number of
required operations [18], [19].

TABLE I

INVERSION OF TRIANGULAR MATRIX [18].

if i = j

U−1
ij = 1

Ujj

else if i < j

U−1
ij = − 1

Ujj

∑j−1
m=1 U−1

imU−1
mj

else if i > j

U−1
ij = 0

IV. ARCHITECTURES

The architectural design of matrix operations in the litera-
ture is often based on systolic array structures with commu-
nicating processing elements (PEs) [11], [12]. The LMMSE
detector coefficient matrix calculation in (4) requires sev-
eral matrix operations such as matrix-matrix multiplications,
QR decomposition, and back substitution or inversion of a
triangular matrix. In this paper these operations have been
implemented using systolic arrays.

The selected architecture is highly dependent on the specific
application. In MIMO-OFDM system, the detector coefficients
are calculated separately for each subcarrier and the dimen-
sions of the calculated coefficient matrices are dependent
on the number of transmit antennas. Thus, the complexity
of the required operations depends mainly of the number
of subcarriers and the number of antennas. The coefficients
need to be updated as the channel changes, i.e., according to
the channel coherence time. In this case the use of adaptive
algorithms, such as recursive least squares (RLS) or least
mean square (LMS), would require separate detectors for each
subcarrier, and, thus, such approach is not feasible for an
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Fig. 2. The CORDIC based LMMSE detector architecture for 2×2 system.

OFDM system. In this paper, the detector is assumed to be
used to calculate the solution in (4) for multiple subcarriers in
the interval of channel coherence time.

The matrix-matrix multiplication can be implemented using
a two dimensional systolic array architecture or a memory
shared linear systolic array architecture [7]. The two dimen-
sional array enables a fast and parallel dataflow whereas the
linear array requires less resources in hardware implementa-
tion.

A traditional method for computing the QRD in literature is
to use a simple and highly parallel triangular array architecture
[11], [12]. Triangular array architecture enables simple data
flow, high throughput with pipelining, and it is feasible for
matrices with low dimensions, e.g., for 2 × 2 matrices. How-
ever, the architecture has certain drawbacks, such as a growing
number of processing elements (PE’s) needed with increasing
matrix dimensions and, thus, lack of easy scalability. As
an alternative structure a linear array architecture could be
considered for larger systems. A derivation of linear QR array
from triangular QR array has been presented, e.g., in [15],
[20].

Both the algorithm for inversion of a triangular matrix [18]
and the back substitution algorithm [7] can be implemented
using a triangular array architecture. With increasing matrix
dimensions, however, a linear array architecture could also
be considered due to the growing complexity of triangular
structure with increasing matrix dimensions. A linear array
mapping of the triangular matrix inversion algorithm has been
presented in [21].

A. CORDIC Based Detector Architecture

The CORDIC based LMMSE detector architecture for 2 ×
2 system is illustrated in Figure 2. Matrix A from (5) is
formed in part A1 using an array of complex multipliers and
summation blocks. The matrices A and B from (5) are then
input to part A2 which consists of two systolic arrays. In the
upper CORDIC based systolic array of part A2 the calculation
of the matrices R and QHB from (8) is carried out. Then the
lower systolic array applies the back substitution algorithm to
form the desired matrix X = Wp.

The architecture presented in Figure 2 does not require
much control logic and the mapping of data flow is relatively
easy. The applied architecture is feasible for systems with
rather low matrix dimensions, i.e., 2 × 2 antenna system.

A2

A1

SIPO
buffer Σ

SIPO
Buffer

RAM

Output
Buffer

Σ

1/SNR

Fig. 3. The CORDIC based LMMSE detector architecture for 4×4 system.
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Fig. 4. The SGR based LMMSE detector architecture for 2 × 2 system.

However, the complexity of the triangular array architecture
grows dramatically with increasing matrix dimensions. Thus,
a less complex architecture, such as linear array, should be
used with higher matrix dimensions. The linear array requires
more control logic and the overall delay for calculation of
detector coefficients is higher, but the required complexity
is less compared to the triangular array architecture. The
CORDIC based LMMSE detector architecture for 4×4 system
is illustrated in Figure 3. The QRD array is replaced with linear
structure which is a less complex solution.

B. SGR Based Detector Architecture

The SGR based LMMSE detector architecture for the 2×2
system is presented in Figure 4. Two dimensional arrays are
used for matrix multiplications and traditional triangular arrays
for matrix inversion. The matrix A from (5) is calculated in
part A1 using a two dimensional array. The matrix inversion
by QRD and triangular matrix inversion is done in part A2
using triangular array architecture. The lower triangular array
in part A2 also executes the calculation of A−1 = U−1QH

A.
The two dimensional array in the A3 part calculates the matrix
multiplication of terms A−1 and B in (17).

The architecture presented in Figure 4 is more suitable for
systema with rather low matrix dimensions. A linear structure
is also designed for systolic arrays with increasing matrix
dimensions, e.g., 4 × 4 antenna system and larger. The SGR
based LMMSE detector architecture for 4×4 antenna system is
presented in Figure 5. A linear array architecture is applied for
each part in Figure 5. The linear structure used for both matrix
multiplications in parts A1 and A3 decreases the required
number of processing elements from 16 to 4. Also the QRD
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Fig. 5. The SGR based LMMSE detector architecture for 4 × 4 system.

and triangular matrix inversion arrays in part A2 are replaced
with a linear array [15]. The linear array requires more
control logic and the overall delay for calculation of detector
coefficients is higher, but the complexity saving compared to
a triangular array grows dramatically with increasing matrix
dimensions. [15], [16], [21].

V. HARDWARE IMPLEMENTATION

An FPGA implementation of the detector architectures
presented in Sections V-A and V-B has been done in a Xilinx
Virtex-II XC2V6000 chip. Both implementations have been
designed to be used with 66 MHz clock frequency, but the
designs could also be modified for higher frequencies. The
FPGA implementations of the detectors will be applied in
Elektrobit Hiperlan-2 based OFDM testbed for 4G MIMO
systems (EB4G) which consists of high-speed, FPGA-based
programmable units. The EB4G supports configurations up to
4× 4 MIMO and has flexible interfaces for digital and analog
base band, IF and RF connections.

The CORDIC based detector was implemented in hand-
written very high speed integrated circuits (VHSIC) hard-
ware description language (VHDL) and functionally verified
in ModelSim. The SGR based LMMSE detector architec-
ture was developed and simulated in System Generator for
DSP software tool from Xilinx. The tool provides high-level
abstractions for Matlab Simulink environment that can be
automatically compiled into VHDL. The tool also enables the
importing of HDL modules into the Simulink-based design
and co-simulating them using ModelSim.

A. CORDIC Based Detector

The CORDIC based QRD array is shown in Figure 6. The
array contains two types of cells, the round vectoring cells and
the square rotating cells. The round boundary cell performs so
the vectoring operation, i.e., it computes the angles needed for
annihilation of the incoming data samples. Two real CORDIC
blocks are needed for complex implementation. The boundary
cell sends the angle values to the inner square cells in the same
row. The inner square cell calculates the new rotated sample
values based on the angle values given from the boundary cell.
Three real CORDIC blocks are needed for each block using
complex numbers. The complexity of the CORDIC-array is
determined by the number of CORDIC iterations and word
length used [9], [14].

Vectoring
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XRe XIm

Vectoring
mode

X'Re

Datavalid

FIFO

X=XRe+jXIm

XIm
XRe

Z
Xin Yin

Rotate
vector
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Z
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Z
Rotate
vector

X'Re X'Im

XRe XIm

Outputvalid

Outputvalid

FIFO

Outputvalid

FIFO

Delay

XinXin YinYin

XoutXout YoutYout

φ

θ

φ

φ

θ

θ

θ

- -

X=XRe+jXIm

Outputvalid

Xin Yin

Xout Z

YinXin

ZXout

Outputvalid

XRe
-

Fig. 6. Hardware realization of the CORDIC vectoring and rotating cells.

The back substitution array cells are illustrated in Figure
7. The triangular array structure includes two different types
of cells. The boundary round cell performs a complex by real
division operation. The division operation in the boundary cell
is implemented using a reciprocal divider from Xilinx IP core
library and two real multipliers. The inner cell contains a
complex multiplication and an arithmetic subtraction opera-
tions. The overall complexity of the back substitution array is
relatively low compared to the QRD array and it is dominated
by the reciprocal divider blocks.

B. SGR Based Detector

The systolic array architecture for the SGR algorithm in-
cludes three different kind of cells as shown in Figure 4 for
2 × 2 system and in Figure 5 for 4 × 4 system. The data
and the control signal flow and timing are omitted from the
figures. In the architecture the round boundary cell is only
a delay element except for the last darkened cell and the
main operations of the SGR algorithm are executed in the
square internal cell. It should be noted that all the cells in
the linear array in Figure 5 include both the boundary cells
and the square internal cell. Hardware realizations of the last
round boundary cell and the square internal cell are presented
in Figure 8. Each cell consists of arithmetic blocks such as
divider, multipliers, adders, multiplexers, and registers. The
darkened blocks and the bold lines depict complex signal
representation. The complexity of the SGR array is dominated
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Fig. 8. Hardware realization of the SGR array cells.

by the complex reciprocal divider block which is executed
in the square internal cell. The complex reciprocal divider
was brought from Xilinx IP core library to System Generator
design as a black box.

The triangular matrix inversion array cells are presented
in Figure 9. The array includes two different kinds of cells.
It should be noted that the linear array architecture cells
include the operations of both cells. The design is based
on [18] with certain simplifications. The round cells do not
need to calculate the reciprocal division operation, because
the required operation is already calculated in another cell
and can be directed to the cell as Yin2. This decreases the
complexity of the array significantly. The complexity of the
array is dominated by the reciprocal divider block which is

1    0

’0'

1/d

Yin

reg

Xin

Yout1

Xout

1    0

’0'reg

Xout

���������������������

�
������������!�#�#

����� �������������������
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������������������

����� �����������������
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inin YXreg /←
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inout YY /12 ←
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Fig. 9. Hardware realization of the triangular matrix inversion array cells.

TABLE II

CORDIC BASED DETECTOR, DEVICE UTILIZATION FOR XC2V6000.

Resource 2 × 2 (Usage %) 4 × 4 (Usage %) Available
CLB Slices 11910 (35.2%) 16805 (49.7%) 33792
Block RAMs 6 (4.2%) 101 (70.1%) 144
Block Multipliers 20 (13.9%) 44 (30.5%) 144

executed in the square internal cell.

C. Area Reports and Comparison of Designs

The area reports include only the LMMSE coefficient matrix
calculation in (4), which dominates the total complexity of the
LMMSE detector. The filtering operation, i.e., a matrix-vector
multiplication, is omitted from the area reports due to similar
design in both detector implementations.

The device utilization with CORDIC based LMMSE de-
tector implementation for 2 × 2 and 4 × 4 systems has been
listed in Table II. The CORDIC algorithm is implemented with
imax = 10 iterations and 16 bit internal word length. It should
be noted that the number of iterations and word length may be
decreased depending on the required accuracy. A design with
imax = 7 iterations and 12 bit internal word length would
require approximately 30% less slices in synthesis. The latency
for the 2×2 and 4×4 coefficient calculation is 685 and 3000
clock cycles, respectively.

The device utilization with SGR based LMMSE detector
implementation for 2 × 2 has been listed in Table III. The
architecture for 4×4 system has not yet been implemented in
an FPGA. However, the estimate for the required complexity
is approximately in the same ratio as with CORDIC based
implementation. The SGR algorithm has been implemented
using maximum internal word length of 19 bits. The latency
for the 2 × 2 coefficient calculation is 415 clock cycles.

It can be noted from the area reports in Tables II and III
that the CORDIC based design requires more slices and less
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TABLE III

SGR BASED DETECTOR, DEVICE UTILIZATION FOR XC2V6000.

Resource 2 × 2 Available Utilization
CLB Slices 6305 33792 18.7 %
Block RAMs 8 144 5.6 %
Block Multipliers 59 144 41.0 %

block multipliers compared to the SGR based design. This is
due to normal arithmetic applied in the SGR algorithm and
the rotation based arithmetic applied in CORDIC algorithm.
Also the required word lengths with fixed-point arithmetic are
a little higher with SGR based design.

D. Comparison of Design Methodologies

The System Generator tool provides high-level abstractions
for the Matlab Simulink environment that can be automat-
ically compiled into VHDL. It was noted that the System
Generator is a good tool for implementation of direct data
flow applications. It provides a graphical user interface (GUI)
with ready blocks which makes it easy to start with for persons
unexperienced with VHDL design. The tool also enables the
importing of HDL modules to the design and verification can
be done using Matlab/Simulink generated test vectors. It was
noted that the generated VHDL is rather good compared to
handwritten VHDL. However, the design of control logic is
not very simple with the tool.

There are still some benefits in writing the VHDL code by
hand. The handwritten VHDL code is optimal in the sense that
one can be sure what is got as an output. However, the opti-
mality of the design is still highly dependent on the expertise
of the designer. The learning time for an unexperienced person
for such an approach may be rather long. The design time for
architecture and hardware implementation was approximately
the same with both design methods.

VI. CONCLUSIONS

Two FPGA implementations of a LMMSE detector were
considered based on the CORDIC and SGR algorithms for
MIMO-OFDM systems, where the detector complexity and the
number of required operations depend mainly of the number
of subcarriers and the number of antennas. The detector
architecture solutions were presented and compared for 2× 2
and 4×4 antenna systems. A fast and parallel architecture was
considered for lower dimensional systems, and a less complex
architecture with easy scalability and time sharing PEs was
considered for larger systems.

The FPGA hardware implementations for both detectors
were presented and the computational complexity of each
implementation was evaluated and compared. The CORDIC
based implementation was found to require more slices and
less block multipliers compared to SGR based design. This
is due to the normal arithmetic applied in the SGR algorithm
and rotation based arithmetic applied in CORDIC algorithm.

The SGR based detector was designed using the System
Generator for DSP tool and the CORDIC based detector was
designed using handwritten VHDL. The two design methods

were compared during the work. It can be noted that the Sys-
tem Generator based flow is useful especially if the designers
are unexperienced with VHDL design.
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