56 research outputs found

    A Strategic Approach to Public Health Workforce Development and Capacity Building

    Get PDF
    In February 2010, CDC’s National Center for HIV/AIDS, Viral Hepatitis, Sexually Transmitted Disease (STD), and Tuberculosis (TB) Prevention (NCHHSTP) formally institutionalized workforce development and capacity building (WDCB) as one of six overarching goals in its 2010–2015 Strategic Plan. Annually, workforce team members finalize an action plan that lays the foundation for programs to be implemented for NCHHSTP’s workforce that year. This paper describes selected WDCB programs implemented by NCHHSTP during the last 4 years in the three strategic goal areas: (1) attracting, recruiting, and retaining a diverse and sustainable workforce; (2) providing staff with development opportunities to ensure the effective and innovative delivery of NCHHSTP programs; and (3) continuously recognizing performance and achievements of staff and creating an atmosphere that promotes a healthy work–life balance. Programs have included but are not limited to an Ambassador Program for new hires, career development training for all staff, leadership and coaching for mid-level managers, and a Laboratory Workforce Development Initiative for laboratory scientists. Additionally, the paper discusses three overarching areas—employee communication, evaluation and continuous review to guide program development, and the implementation of key organizational and leadership structures to ensure accountability and continuity of programs. Since 2010, many lessons have been learned regarding strategic approaches to scaling up organization-wide public health workforce development and capacity building. Perhaps the most important is the value of ensuring the high-level strategic prioritization of this issue, demonstrating to staff and partners the importance of this imperative in achieving NCHHSTP’s mission

    Fc-Optimized Anti-CD25 Depletes Tumor-Infiltrating Regulatory T Cells and Synergizes with PD-1 Blockade to Eradicate Established Tumors

    Get PDF
    CD25 is expressed at high levels on regulatory T (Treg) cells and was initially proposed as a target for cancer immunotherapy. However, anti-CD25 antibodies have displayed limited activity against established tumors. We demonstrated that CD25 expression is largely restricted to tumor-infiltrating Treg cells in mice and humans. While existing anti-CD25 antibodies were observed to deplete Treg cells in the periphery, upregulation of the inhibitory Fc gamma receptor (FcγR) IIb at the tumor site prevented intra-tumoral Treg cell depletion, which may underlie the lack of anti-tumor activity previously observed in pre-clinical models. Use of an anti-CD25 antibody with enhanced binding to activating FcγRs led to effective depletion of tumor-infiltrating Treg cells, increased effector to Treg cell ratios, and improved control of established tumors. Combination with anti-programmed cell death protein-1 antibodies promoted complete tumor rejection, demonstrating the relevance of CD25 as a therapeutic target and promising substrate for future combination approaches in immune-oncology

    Fc Effector Function Contributes to the Activity of Human Anti-CTLA-4 Antibodies.

    Get PDF
    With the use of a mouse model expressing human Fc-gamma receptors (FcγRs), we demonstrated that antibodies with isotypes equivalent to ipilimumab and tremelimumab mediate intra-tumoral regulatory T (Treg) cell depletion in vivo, increasing the CD8+ to Treg cell ratio and promoting tumor rejection. Antibodies with improved FcγR binding profiles drove superior anti-tumor responses and survival. In patients with advanced melanoma, response to ipilimumab was associated with the CD16a-V158F high affinity polymorphism. Such activity only appeared relevant in the context of inflamed tumors, explaining the modest response rates observed in the clinical setting. Our data suggest that the activity of anti-CTLA-4 in inflamed tumors may be improved through enhancement of FcγR binding, whereas poorly infiltrated tumors will likely require combination approaches

    A preliminary neutron crystallographic study of proteinase K at pD 6.5

    No full text
    Preliminary neutron crystallographic data from the serine protease proteinase K have been recorded using the LADI-III diffractometer at the Institut Laue–Langevin. The results illustrate the feasibility of a full neutron structural analysis aimed at further understanding the catalytic mechanism of proteinase K

    The Neutron Macromolecular Crystallography Instruments at Oak Ridge National Laboratory: Advances, Challenges, and Opportunities

    No full text
    The IMAGINE and MaNDi instruments, located at Oak Ridge National Laboratory High Flux Isotope Reactor and Spallation Neutron Source, respectively, are powerful tools for determining the positions of hydrogen atoms in biological macromolecules and their ligands, orienting water molecules, and for differentiating chemical states in macromolecular structures. The possibility to model hydrogen and deuterium atoms in neutron structures arises from the strong interaction of neutrons with the nuclei of these isotopes. Positions can be unambiguously assigned from diffraction studies at the 1.5–2.5 Å resolutions, which are typical for protein crystals. Neutrons have the additional benefit for structural biology of not inducing radiation damage to protein crystals, which can be critical in the study of metalloproteins. Here we review the specifications of the IMAGINE and MaNDi beamlines and illustrate their complementarity. IMAGINE is suitable for crystals with unit cell edges up to 150 Å using a quasi-Laue technique, whereas MaNDi provides neutron crystallography resources for large unit cell samples with unit cell edges up to 300 Å using the time of flight (TOF) Laue technique. The microbial culture and crystal growth facilities which support the IMAGINE and MaNDi user programs are also described

    The Structure of Sindbis Virus Produced from Vertebrate and Invertebrate Hosts as Determined by Small-Angle Neutron Scatteringâ–¿

    No full text
    The complex natural cycle of vectored viruses that transition between host species, such as between insects and mammals, makes understanding the full life cycle of the virus an incredibly complex problem. Sindbis virus, an arbovirus and prototypic alphavirus having an inner protein shell and an outer glycoprotein coat separated by a lipid membrane, is one example of a vectored virus that transitions between vertebrate and insect hosts. While evidence of host-specific differences in Sindbis virus has been observed, no work has been performed to characterize the impact of the host species on the structure of the virus. Here, we report the first study of the structural differences between Sindbis viruses grown in mammalian and insect cells, which were determined by small-angle neutron scattering (SANS), a nondestructive technique that did not decrease the infectivity of the Sindbis virus particles studied. The scattering data and modeling showed that, while the radial position of the lipid bilayer did not change significantly, it was possible to conclude that it did have significantly more cholesterol when the virus was grown in mammalian cells. Additionally, the outer protein coat was found to be more extended in the mammalian Sindbis virus. The SANS data also demonstrated that the RNA and nucleocapsid protein share a closer interaction in the mammalian-cell-grown virus than in the virus from insect cells
    • …
    corecore