29 research outputs found

    Information-extreme machine learning of wrist prosthesis control system based on the sparse training matrix

    Get PDF
    The article considers the problem of machine learning of a wrist prosthesis control system with a noninvasive biosignal reading system. The task is solved within the framework of information-extreme intelligent data analysis technology, which is based on maximizing the system’s information productivity in machine learning. The idea of information-extreme machine learning of the control system for recognition of electromyographic biosignals, as in artificial neural networks, consists in adapting the input information description to the maximum total probability of making correct classification decisions. However, unlike neuro-like structures, the proposed method was developed within a functional approach to modeling the cognitive processes of the natural intelligence of forming and making classification decisions. As a result, the proposed method acquires the properties of adaptability to the intersection of classes in the space of recognition features and flexibility when retraining the system due to the recognition class alphabet expansion. In addition, the decision rules constructed within the framework of the geometric approach are practically invariant to the multidimensionality of the space of recognition features. The difference between the developed method and the well-known methods of information-extreme machine learning is the use of a sparse training matrix, which allows for reducing the degree of intersection of recognition classes significantly. The optimization parameter of the input information description, the training dataset, is the quantization level of electromyographic biosignals. As an optimization criterion is considered the modified Kullback information measure. The proposed machine learning algorithm results are shown in the example of recognition of six finger movements and wrist

    Radiation-Induced Bystander Effects in Cultured Human Stem Cells

    Get PDF
    The radiation-induced "bystander effect" (RIBE) was shown to occur in a number of experimental systems both in vitro and in vivo as a result of exposure to ionizing radiation (IR). RIBE manifests itself by intercellular communication from irradiated cells to non-irradiated cells which may cause DNA damage and eventual death in these bystander cells. It is known that human stem cells (hSC) are ultimately involved in numerous crucial biological processes such as embryologic development; maintenance of normal homeostasis; aging; and aging-related pathologies such as cancerogenesis and other diseases. However, very little is known about radiation-induced bystander effect in hSC. To mechanistically interrogate RIBE responses and to gain novel insights into RIBE specifically in hSC compartment, both medium transfer and cell co-culture bystander protocols were employed.Human bone-marrow mesenchymal stem cells (hMSC) and embryonic stem cells (hESC) were irradiated with doses 0.2 Gy, 2 Gy and 10 Gy of X-rays, allowed to recover either for 1 hr or 24 hr. Then conditioned medium was collected and transferred to non-irradiated hSC for time course studies. In addition, irradiated hMSC were labeled with a vital CMRA dye and co-cultured with non-irradiated bystander hMSC. The medium transfer data showed no evidence for RIBE either in hMSC and hESC by the criteria of induction of DNA damage and for apoptotic cell death compared to non-irradiated cells (p>0.05). A lack of robust RIBE was also demonstrated in hMSC co-cultured with irradiated cells (p>0.05).These data indicate that hSC might not be susceptible to damaging effects of RIBE signaling compared to differentiated adult human somatic cells as shown previously. This finding could have profound implications in a field of radiation biology/oncology, in evaluating radiation risk of IR exposures, and for the safety and efficacy of hSC regenerative-based therapies

    Global Gene Expression Alterations as a Crucial Constituent of Human Cell Response to Low Doses of Ionizing Radiation Exposure

    No full text
    Exposure to ionizing radiation (IR) is inevitable to humans in real-life scenarios; the hazards of IR primarily stem from its mutagenic, carcinogenic, and cell killing ability. For many decades, extensive research has been conducted on the human cell responses to IR delivered at a low dose/low dose (LD) rate. These studies have shown that the molecular-, cellular-, and tissue-level responses are different after low doses of IR (LDIR) compared to those observed after a short-term high-dose IR exposure (HDIR). With the advent of high-throughput technologies in the late 1990s, such as DNA microarrays, changes in gene expression have also been found to be ubiquitous after LDIR. Very limited subset of genes has been shown to be consistently up-regulated by LDIR, including CDKN1A. Further research on the biological effects and mechanisms induced by IR in human cells demonstrated that the molecular and cellular processes, including transcriptional alterations, activated by LDIR are often related to protective responses and, sometimes, hormesis. Following LDIR, some distinct responses were observed, these included bystander effects, and adaptive responses. Changes in gene expression, not only at the level of mRNA, but also miRNA, have been found to crucially underlie these effects having implications for radiation protection purposes

    Effects of Low Doses of Ionizing Radiation Exposures on Stress-Responsive Gene Expression in Human Embryonic Stem Cells

    Get PDF
    There is a great deal of uncertainty on how low (≤0.1 Gy) doses of ionizing radiation (IR) affect human cells, partly due to a lack of suitable experimental model systems for such studies. The uncertainties arising from low-dose IR human data undermine practical societal needs to predict health risks emerging from diagnostic medical tests’ radiation, natural background radiation, and environmental radiological accidents. To eliminate a variability associated with remarkable differences in radioresponses of hundreds of differentiated cell types, we established a novel, human embryonic stem cell (hESC)-based model to examine the radiobiological effects in human cells. Our aim is to comprehensively elucidate the gene expression changes in a panel of various hESC lines following low IR doses of 0.01; 0.05; 0.1 Gy; and, as a reference, relatively high dose of 1 Gy of IR. Here, we examined the dynamics of transcriptional changes of well-established IR-responsive set of genes, including CDKN1A, GADD45A, etc. at 2 and 16 h post-IR, representing “early” and “late” radioresponses of hESCs. Our findings suggest the temporal- and hESC line-dependence of stress gene radioresponses with no statistically significant evidence for a linear dose-response relationship within the lowest doses of IR exposures

    Method for Determining Areas of Stable Solutions of Inverse Problems of Mathematical Physics by the Example of Well Electrometry

    No full text
    The formulation of the inverse problem of good electrometry is considered. The value of the accuracy of the direct problem solution is shown for the iterative solution of the inverse problem. The specific formulation of the inverse problem of good electrometry for electric and induction methods for studying productive formations is described. The influence of the error on the results of good measurements on the possible consequence of solving the inverse problem is investigated. A method is proposed for determining the magnitude of the error of the inverse problem from the importance of the mistake of suitable measurements. The issue of finding a stable solution to the incorrectly posed inverse problem of good electrometry is investigated. A method is proposed for constructing equivalent solutions in the metric space of the determined parameters of the objects under study

    Comparative Analysis of Whole-Genome Gene Expression Changes in Cultured Human Embryonic Stem Cells in Response to Low, Clinical Diagnostic Relevant, and High Doses of Ionizing Radiation Exposure

    No full text
    The biological effects of low-dose ionizing radiation (LDIR) exposure in humans are not comprehensively understood, generating a high degree of controversy in published literature. The earliest stages of human development are known to be among the most sensitive to stress exposures, especially genotoxic stresses. However, the risks stemming from exposure to LDIR, particularly within the clinical diagnostic relevant dose range, have not been directly evaluated in human embryonic stem cells (hESCs). Here, we describe the dynamics of the whole genome transcriptional responses of different hESC lines to both LDIR and, as a reference, high-dose IR (HDIR). We found that even doses as low as 0.05 Gy could trigger statistically significant transient changes in a rather limited subset of genes in all hESCs lines examined. Gene expression signatures of hESCs exposed to IR appear to be highly dose-, time-, and cell line-dependent. We identified 50 genes constituting consensus gene expression signature as an early response to HDIR across all lines of hESC examined. We observed substantial differences in biological pathways affected by either LDIR or HDIR in hESCs, suggesting that the molecular mechanisms underpinning the responses of hESC may fundamentally differ depending on radiation doses

    Unraveling the Global microRNAome Responses to Ionizing Radiation in Human Embryonic Stem Cells

    Get PDF
    MicroRNAs (miRNA) comprise a group of short ribonucleic acid molecules implicated in regulation of key biological processes and functions at the post-transcriptional level. Ionizing radiation (IR) causes DNA damage and generally triggers cellular stress response. However, the role of miRNAs in IR-induced response in human embryonic stem cells (hESC) has not been defined yet. Here, by using system biology approaches, we show for the first time, that miRNAome undergoes global alterations in hESC (H1 and H9 lines) after IR. Interrogation of expression levels of 1,090 miRNA species in irradiated hESC showed statistically significant changes in 54 genes following 1 Gy of X-ray exposures; global miRNAome alterations were found to be highly temporally and cell line- dependent in hESC. Time-course studies showed that the 16 hr miRNAome radiation response of hESC is much more robust compared to 2 hr-response signature (only eight genes), and may be involved in regulating the cell cycle. Quantitative real-time PCR performed on some miRNA species confirms the robustness of our miRNA microarray platform. Positive regulation of differentiation-, cell cycle-, ion transport- and endomembrane system-related processes were predicted to be negatively affected by miRNAome changes in irradiated hESC. Our findings reveal a fundamental role of miRNAome in modulating the radiation response, and identify novel molecular targets o

    Effects of DNA-targeted ionizing radiation produced by 5-[<sup>125</sup>I]iodo-2'-deoxyuridine on global gene expression in primary human cells

    No full text
    Abstract Background This study assesses the whole-genome gene expression changes in a panel of primary human cell lines in response to DNA damage mediated by decay of DNA-incorporated radioiodinated thymidine analog 5-[125I]iodo-2'-deoxyuridine (125I-IUdR). Three normal human cell lines of different origin, namely, gingival fibroblasts AG09319, fetal skin fibroblasts GM05388 and neonatal foreskin epidermal keratinocytes (NHFK) were used in this study. DNA molecules were radiolabeled by incubation of cells in culture in a medium supplemented with either 3.7 kBq/ml or 18.5 kBq/ml of 125I-IUdR for 24 h followed by incubation in IUdR-free medium for additional 24 hours. Each experiment was carried out in quadruplicate. 125I-IUdR uptake was monitored by measuring DNA-associated radioactivity. The whole-genome gene expression changes were evaluated using Agilent Human Whole Genome oligo microarrays containing 44,290 elements representing all known and predicted human genes. DNA microarray dataset was independently partially validated with quantitative real-time PCR (RT-PCR). Results AG09319 gingival cells in culture responded to 125I-IUdR treatment by changing the expression level of 335 genes in total, whereas under the same conditions GM05388 and NHFK cells differentially expressed 49 genes and 27 genes, respectively. However, for GM05388 cells the number of differentially expressed genes increases with the rise of 125I-IUdR concentrations in cell culture media. The key up-regulated biological processes in a chosen panel of cell lines concern the regulation of protein kinase activities and/or cell death. Genes repressed in response to 125I-IUdR treatment are involved in cytokinesis, M phase of the cell cycle, chromosome architecture and organization, DNA metabolism, DNA packaging, DNA repair and response to DNA damage. Despite the disparate nature of the gene patterns elicited by 125I-induced DNA damage among the different cell lines, the differentially expressed transcripts reveal strikingly non-random chromosomal distribution in all the cell lines we used. Conclusion Our data suggest that DNA-targeted ionizing radiation produced by 125I-IUdR results in changes in expression of only a limited subset of genes in primary human cells. The responsive genes are distributed non-randomly among the chromosomes; and a significant fraction of them is p53-dependent in the transcriptional regulation.</p
    corecore