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Abstract. The article considers the problem of machine learning of a wrist prosthesis control system with a non-

invasive biosignal reading system. The task is solved within the framework of information-extreme intelligent data 

analysis technology, which is based on maximizing the system’s information productivity in machine learning. The 

idea of information-extreme machine learning of the control system for recognition of electromyographic biosignals, 

as in artificial neural networks, consists in adapting the input information description to the maximum total probabil-

ity of making correct classification decisions. However, unlike neuro-like structures, the proposed method was devel-

oped within a functional approach to modeling the cognitive processes of the natural intelligence of forming and 

making classification decisions. As a result, the proposed method acquires the properties of adaptability to the inter-

section of classes in the space of recognition features and flexibility when retraining the system due to the recognition 

class alphabet expansion. In addition, the decision rules constructed within the framework of the geometric approach 

are practically invariant to the multidimensionality of the space of recognition features. The difference between the 

developed method and the well-known methods of information-extreme machine learning is the use of a sparse train-

ing matrix, which allows for reducing the degree of intersection of recognition classes significantly. The optimization 

parameter of the input information description, the training dataset, is the quantization level of electromyographic bi-

osignals. As an optimization criterion is considered the modified Kullback information measure. The proposed ma-

chine learning algorithm results are shown in the example of recognition of six finger movements and wrist. 
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1 Introduction 

Despite a significant number of studies on improving 

the interaction of a person with a disability with a limb 

prosthesis, the convenience, functionality, and prevalence 

of active prostheses in everyday life remain low. For the 

user, the accuracy of movement selection, the intuitive-

ness of control, and the system’s reaction time are essen-

tial properties of prosthesis control. The main direction of 

the development of hand prostheses is provided based on 

electromyography as a method of analyzing the natural 

control impulses of the nervous system. The most ad-

vanced are limb prostheses with an invasive biosignal 

reading system. But their main drawback is a very high 

cost on the world market. In addition, the use of invasive 

biosignal reading systems requires prior surgical inter-

vention. This makes it possible to increase the “biosig-

nal/interference” ratio, which significantly affects the 

accuracy of performing cognitive commands but creates 

additional inconveniences for people with disabilities. 

Non-invasive bionic prostheses controlled by signals 

from passive electromyographic sensors, as a rule, have a 

limited set of commands, and the corresponding cognitive 

commands are provided with insufficient accuracy. The 

reasons for this unsatisfactory state are the high noise of 

biosignals, mainly due to the unstable contact of the elec-

tromyographic sensor. 

The primary trend of increasing the functional effi-

ciency of non-invasive hand prostheses is the application 

of intelligent information technologies of data analysis 

based on machine learning and pattern recognition. The 

complexity of the information synthesis of the intelligent 

prosthesis control system lies in need to solve scientific 

and methodological problems caused by the arbitrary 

initial conditions of the operation of the prosthesis control 

system and the intersection in the space of features of 
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recognition classes that characterize the possible permis-

sible movements of the prosthesis. 

The article deals with the issue of increasing the func-

tional efficiency of the machine learning system for con-

trolling a wrist prosthesis with a non-invasive electromy-

ographic system for reading biosignals by using the so-

called sparse training matrix.  

2 Literature Review  

Papers [1, 2] consider hand prostheses with an 

invasive system for reading biosignals, which require 

surgical intervention and have a high cost, being 

considered. Works [3, 4] describe prostheses endowed 

with a tactile function capable of recognizing and feeling 

the surface of an object. In addition, work [5] proposed to 

increase the accuracy of cognitive command execution 

using an additional eye movement optical tracking sys-

tem. Still, this approach significantly increases the pros-

thesis’s cost and complicates its use conditions. As for 

existing non-invasive prostheses controlled by signals 

from passive electromyographic sensors, achieving high 

accuracy depends on the reliability of recognizing elec-

tromyographic biosignals by the prosthesis control sys-

tem. This is especially relevant when recognizing elec-

tromyographic biosignals of cognitive commands for the 

movement of individual fingers, even with undamaged 

muscle tissue. The unsatisfactory state of recognition of 

biosignals of the relevant cognitive commands is due to 

the shortcomings of modern intelligent information tech-

nologies of data analysis. There are well-known machine 

learning algorithms for establishing correspondence be-

tween biosignals and cognitive commands based on neu-

ral networks [6–8] and the method of support vectors [9, 

10]. But the main disadvantages of these methods are 

sensitivity to the multidimensionality of the dictionary of 

recognition features and the alphabet of recognition clas-

ses, which occurs when recognizing biosignals of cogni-

tive commands. In works [11, 12], it is proposed to use 

input data extractors built on artificial neural networks, 

which do not exclude the loss of information. The paper 

[13] considers the possibility of using fuzzy neural net-

works for signal recognition, but at the same time, there 

is also a problem of multidimensionality. 

The use of ideas and methods of the so-called infor-

mation-extreme intelligent technology (IEIT) of data 

analysis, which is based on maximizing the system’s 

information capacity in the process of machine learning 

[14, 15], should be considered as a perspective direction. 

The central paradigm of information-extreme machine 

learning, as well as in neuro-like structures, is adapting 

the system’s input information description to the maxi-

mum reliability of pattern recognition. But in contrast to 

neuro-like structures, the decision-making rules con-

structed within the framework of the geometric approach 

are practically invariant to the multidimensionality of the 

space of recognition features. The paper [16] considered 

the information-extreme machine learning system for 

controlling a wrist prosthesis for three gestures. 

This article aims to increase the functional efficiency 

of the information-extreme machine learning of the hand 

bone prosthesis control system by optimizing the quanti-

zation of biosignals at the output of the electromyo-

graphic sensor. This approach makes it possible to form 

the so-called sparse training matrix, which reduces the 

influence of the power of the alphabet of recognition 

classes on the probability of making the correct classifi-

cation decisions. 

3 Research Methodology 

3.1 Statement of the research task 

Let the alphabet of recognition classes 

},1|{ MmX o

m =  and proper training matrix of the 

“object-property” type be formed 

||,1;,1||| max

)(

, JjNiy j

im == , where N, Jmax – the number 

of signs of recognition features and pattern realizations, 

respectively. 

According to the concept of IEIT a structured vector of 

functioning parameters of the system, trained to reconise 

class
o

mX  realisations, is given in the binary space of 

Hamming recognition features: 

 

             ,.,,, = hdxg mmm
              (1) 

 

where  – averaged binary feature vector of the recog-

nition class ;  – the radius of the hyperspherical 

container of the recognition class , which in the pro-

cess of machine learning is restored in the radial basis of 

the space of recognition features;  – parameter of the 

field of control tolerances on recognition features;  

– quantization step by electromyographic biosignal 

level. 

The parameter  is equal to half of the symmetrical 

field of control tolerances on recognition features as 

shown in Figure 1. 

 

Figure 1 – Tolerance fields for the recognition feature 

 

The following notations are used in Figure 1:  

 – the nominal value of the feature ;  – lower 

normalized (operational) tolerance;  – upper normal-

ized tolerance;  – lower control tolerance;  – 

upper control tolerance;  – field of control tolerances; 

 – field of normalized tolerances. 
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The parameters of the system functioning, which 

will be called parameters of machine learning, are im-

posed by the following restrictions: 

• the value range of recognition features is set by 

the maximum battery current of 100 mA 

• the inequality gives the range of values of the ra-

dius of the recognition class container  

 

)( cmm xxdd  , 

 

where  – intercenter distance between the 

averaged feature vector  and analogous vector  

nearest neighbor class ; 

• the parameter  value range is given by ine-

quality  

 

2/H , 

 

where 
H  – the normalized field of tolerances for recog-

nition features, which defines the range of values of con-

trol tolerances; 

• the value of the parameter  is determined by the 

number of biosignal quantization steps in the range 

[0...100 mА]. 

It is necessary for the process of information-

extreme machine learning of the hand prosthesis man-

agement system to: 

1) optimize the parameters of machine learning (1), 

which provide the maximum value of the information 

optimization criterion in the working (acceptable) area of 

defining its function: 

 

                          
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,                       (2)  

where − the value of the information criterion calcu-

lated at the -th step of machine learning;  − the work-

ing area of defining the information criterion; – is an 

ordered set of machine learning steps. 

2) decide whether the recognized realization belongs 

to one of the classes of the given alphabet at the exam 

stage to check the functional effectiveness of machine 

learning. 

Thus, the task of information synthesis of an intelli-

gent wrist prosthesis control system consists of optimiz-

ing machine learning parameters (1) by approximating 

the global maximum of the information criterion (2) to its 

maximum limit value. 

 

3.2 Functional categorical model of machine 

learning 
 

The categorical model of information-extreme 

learning of the prosthesis control system is considered in 

the form of an oriented graph, the edges of which are 

characterized by set mapping operators. At the same time, 

the input mathematical description has the following 

structure 

= 21,;,,,,, ffXYZTGI , 
 

where G – a set of biosignals registered by the system;  

T  – a set of data registration time moments;  

Σ – a dictionary of recognition features; Z – the space of 

possible functional states of the controlled process; Y – 

set of vectors of realizations of recognition classes, which 

forms an input training matrix; Х – binary training 

matrix; 1f  – the operator of the input training matrix Y 

formation; 2f  - binary training matrix formation 

operator Х. 

Figure 2 shows the functional categorical model of 

information-extreme machine learning of the prosthesis 

control system with optimization of control tolerances on 

recognition features and quantization levels of biosignals 

at the output of the electromyographic sensor. 

 

 
 

Figure 2 – Functional categorical model of information-extreme 

machine learning of the prosthesis control system 

 

In Figure 2, the term set , the elements calculated 

at each step of machine learning according to formula (2), 

is common to all optimization contours of vector parame-

ters (1). The operator  , in the process of 

machine learning, restores the containers of recognition 

classes in the radial basis of the binary feature space, 

which generally forms a fuzzy partition . The opera-

tor θ reflects the partitioning  into a fuzzy distribu-

tion of a priori classified binary feature vectors of recog-

nition classes. The next operator is  where 

 – the set of hypotheses that checks the main statistical 

hypothesis . The operator  defines a set of 

accuracy characteristics , where , and operator 

  calculates a set of values of information optimization 

criterion E that is a function of accuracy characteristics. 

The categorical model contains the contour of optimiza-

tion of control tolerances on recognition features, which 

is closed through the term set  of permissible values of 

control tolerances. At the same time, the operator  

changes the control field at each step of machine learn-

ing, and the operator  evaluates the dependence of 

recognition features on the given control field of toler-

ances. In addition, the categorical model contains a cir-
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cuit for optimizing the quantization levels of electromyo-

graphic biosignals, which includes the term set  of ad-

missible values of quantization levels. In this circuit, at 

each step of machine learning, the operator  changes 

the quantization level, and the operator  changes the 

dictionary of recognition features . The operator  regu-

lates the process of machine learning. 

3.3 Description of the machine learning 

algorithm  
 

According to the categorical model (Fig. 2), the in-

formation-extreme machine learning algorithm of the 

prosthesis control system is presented in the form of a 

three-cycle iterative procedure for finding the global 

maximum of the information optimization criterion (2) in 

the working area of determining its function: 

                    },max{max{maxarg
)(

,
}{

* k

h
kGGG

Eh
Eh






=            (3) 

where  – the average value of the information criteri-

on, calculated according to formula (2) at the -th step of 

machine learning;  – the range of permissible values of 

quantization levels of biosignals;  – the area of permis-

sible values of control tolerances on recognition features.  
The implementation of the machine learning algo-

rithm of the prosthesis control system according to pro-

cedure (3) was carried out with the parallel optimization 

of control tolerances on recognition features, in which all 

tolerances for recognition features change simultaneously 

by a given value.  

The input information for the machine learning al-

gorithm is the array of the training matrix  and the 

system of fields of normalized tolerances  for 

recognition features, which sets the range of values of the 

corresponding control tolerances.  

Let’s consider the main stages of information-

extreme machine learning:  

1)  Definition for a given alphabet of the basic class of 

recognition, in relation to which the control tolerances on 

the features of the averaged vector are determined. For 

this purpose, the internal cycle of procedure (3) is imple-

mented, the main functions of which are the calculation 

of the information optimization criterion (2) at each ma-

chine learning step and the search for its global maxi-

mum, which determines the optimal radii of hyperspheri-

cal containers of recognition classes. At the same time, 

this procedure is carried out for all classes of recognition, 

which are considered consistently basic. The scheme of 

the algorithm, for example, in the case of the base class, 

 looks like this:  

a)  the averaged feature vector
o

mm Xy   is determined; 

b)  the input training matrix is transformed into a 

working binary training matrix, the elements of which are 

determined by the rule 
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с) an array of averaged binary realization vectors is 

formed , it’s elements are 

formed by the rule 

 

 
 

where  − the selection level of binary vector coordi-

nates , which is set by default =0,5; 

d) division of the set of averaged feature vectors  

into pairs of nearest neighbors:  = <xm ,xl >, where 

xl – the averaged feature vector of the neighboring class 

; 

e) optimization of the code distance  according to 

the iterative procedure of finding the global maximum of 

the information criterion for machine learning parameters 

optimization in the working area of its function determin-

ing: 

                              )(

}{

* maxarg k

m
kG

m Ed
E 

=                              

 

when fulfilling the restriction on the value of the radius 

 of the container of the recognition class , it gain 

the form  

 

. 
 

As a result of sorting through all the recognition clas-

ses, the class with the maximum value of the optimization 

criterion (2) is taken as the basic. Then, for a given al-

phabet with a defined basic recognition class, procedure 

(3) is implemented in full, and optimal lower  and 

upper  control tolerances on recognition features are 

determined, respectively, according to the rules 

                     

                ;; *

,

*

,

*

,

*

, +=−= imiBimiH yAyA              

 

Thus, for hyperspherical containers of recognition 

classes, the optimal parameters of information-extreme 

machine learning are the averaged vectors of recognition 

features  for a given alphabet , the radii of con-

tainers of recognition classes and the system of con-

trol tolerances  and  on recognition features.  

As a criterion for the optimization of machine learn-

ing parameters, we will use the modified information 

criterion of Kullbak, the working formula of which in 

case of equally probable two alternative hypotheses has 

the form 
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where  – the amount of events that mean the non-

belonging of "own" feature vectors to the recognition 

class ;  – the number of events that mean belong-

ing to "foreign" feature vectors of the recognition class 

; 10-p – is a sufficiently small number that is entered to 

avoid division by zero; p − a number that is recommend-

ed in practice to choose from the interval 31  p . 

The normalized modification of criterion (5) is given 

in the form [2] 

 

                      
max

)(

E

E
E

k

m= ,                           (5) 

 

where maxE  – the value of the information criterion at 

the maximum values of the first and second reliabilities 

and zero errors of the first and second kind. 

Decision rules were formed according to the optimal 

geometric parameters of the recognition class containers 

obtained in the process of machine learning. These rules 

may be presented in production form 

    


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where  – is a vector to recognizd;  – is the func-

tion of the vector  belonging to the container of the 

recognition class . 

In expression (6), the membership function for the hy-

perspherical container of the recognition class  is de-

termined by the formula 

                                   ,
)(

1
*

)(*

m

j

m
m

d

xxd 
−=                   (7) 

where )( )(* j

m xxd  − code distance between the vec-

tor *

mx  and the vector 
)( jx to be recognized.  

Since the decision rules (7) are built within the 

framework of a geometric approach, they are practically 

invariant to the multidimensionality of the dictionary of 

recognition features and are characterized by high effi-

ciency, which is an important indicator of the functional 

efficiency of the prosthesis control system in the working 

mode. 

4 Results 

The implementation of the machine learning algorithm 

considered above was carried out according to a fuzzy 

classified three-dimensional input learning matrix, ob-

tained by processing electromyographic biosignals for 

seven movements of the wrist and fingers:  

a) squeezing the thumb and middle fingers into a ring 

(class
оХ1 ); 

b) pinch little finger and thumb (class 
оХ 2 ); 

c) squeezing the thumb and forefinger into a ring 

(class oX3
);  

d) palm flexion (class oX4
); 

e) clenching the palm into a fist (class oX5
);  

f) palm extension (class oX6
); 

i) pinching the thumb and ring finger into a ring (class 
oX7

). 

Based on the electromyographic biosignals given in 

[17], an input training matrix was formed for each of the 

specified recognition classes. The formation of structured 

vectors of features of the corresponding classes of recog-

nition was carried out by time quantization of a biosignal 

with a period of 10 ms at a given time interval of 2 s. 

That is, each vector consisted of 200 recognition features, 

and the number of vectors for each recognition class was 

equal to 40=n . At the same time, in order to filter the 

noise, the quantization of the biosignal began when its 

amplitude reached the threshold value of 30 mV. 

The recognition class  (palm flexion) was chosen as 

the basic one, for which the maximum average value of 

the normalized criterion (5) was obtained. Then, machine 

learning of the prosthesis control system was implement-

ed according to the procedure (3). At the same time, the 

quantization level was changed by 20 mV at each step of 

machine learning. Figure 3 shows graphs of the depend-

ence of criterion (5) on the radii of the recognition class 

containers at the initial quantization level . 
 

 
                           a                                         b 

 

 
                        c                                            d 
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                        e                                           f 

 
    g 

Figure 3 – Graphs of the dependence of the optimization criteri-

on (5) on the radii of the recognition class containers: 

a – class оХ1 ; b – class оХ2 ; c – class oX3 ; d – class oX4 ;  

e – class oX5 ; f – class oX6 ; g – class oX7  

 

In Figure 3, the working (allowable) area of the defini-

tion of the function of the information criterion (4) is 

indicated by double hatching, in which, with two alterna-

tive solutions, the first and second reliability is more, 

respectively, errors of the first and second kind. 

The analysis of this figure shows that at the initial 

quantization level of biosignals ( ), the average 

value of the normalized information optimization criteri-

on (5) is equal to . At the same time, the recog-

nition class  was not classified since there is no work-

ing area of the defining function of the information crite-

rion. In the process of machine learning, the level of 

quantization of biosignals  is considered op-

timal, because the average value of criterion (5) is equal 

to , i.e. increased more than four times. 

Figure 4 shows graphs of the dependence of the nor-

malized information criterion (5) on the radii of the 

recognition class containers at the optimal quantization 

level.  

 
                             a                                 b 

 
                            c                                          d 

 

 
                           e                                           f      

 

 
        g 

Figure 4 – Graphs of the dependence of the optimization criteri-

on (5) on the radii of the recognition class containers at 

optimal level of quantization of biosignals: a – class оХ1 ;  

b – class оХ2 ; c – class oX3 ; d – class oX4 ; e – class oX5 ;  

f – class oX6 ; g – class oX7  
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In Figure 4, all recognition classes have working areas 

for determining the function of the optimization criterion, 

which means they are all informationally separated. To 

construct the decision rules (6), knowledge of the optimal 

geometric parameters of the recognition class containers 

obtained in machine learning is required. The analysis of 

Figure 4 shows that the optimal radii of the containers of 

the recognition classes are equal to:  (the Ham-

ming distance in code units is still used here) for the class 

,  for the class ,  for the class , 

 for the class ,  for the class , 

 for the class  і  for the class oX 7
. 

The relatively low value of the criterion for optimizing 

machine learning parameters indicates the existence of a 

significant intersection of recognition classes in the space 

of Hamming features. 

Conclusions  

The information-extreme machine learning algorithm 

of the prosthesis control system is proposed for the 

recognition of electromyographic biosignals of cognitive 

commands for seven wrist and finger movements. The 

depth of machine learning was equal to the third level, at 

which the geometric parameters of the recognition class 

containers, the system of control tolerances for recogni-

tion features, and the levels of quantization of biosignals 

from the output of the electromyographic sensor were 

optimized. 

This level of depth of information-extreme machine 

learning made it possible to obtain the information sepa-

rability of all classes of recognition from the given alpha-

bet. In addition, optimizing the quantization level of bi-

osignals made it possible to significantly increase the 

functional efficiency of machine learning due to the for-

mation of a sparse learning matrix. The use of a sparse 

matrix reduces the degree of intersection of recognition 

classes in the feature space, which makes it possible to 

increase the reliability of classification cracks. Based on 

the optimal geometric parameters of the recognition class 

containers obtained in machine learning, decisive rules 

are built that are characterized by high efficiency. 

A promising direction for increasing the functional ef-

ficiency of the proposed method of information-extreme 

machine learning is to increase its level of depth by opti-

mizing additional parameters, including input data pro-

cessing parameters. In addition, when increasing the 

power of the alphabet of recognition classes, it is advisa-

ble to use hierarchical information-extreme machine 

learning. 
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