712 research outputs found

    The clinical anatomy of the cephalic vein in the deltopectoral triangle

    Get PDF
    Identification and recognition of the cephalic vein in the deltopectoral triangle is of critical importance when considering emergency catheterization procedures. The aim of our study was to conduct a cadaveric study to access data regarding the topography and the distribution patterns of the cephalic vein as it relates to the deltopectoral triangle. One hundred formalin fixed cadavers were examined. The cephalic vein was found in 95% (190 right and left) specimens, while in the remaining 5% (10) the cephalic vein was absent. In 80% (152) of cases the cephalic vein was found emerging superficially in the lateral portion of the deltopectoral triangle. In 30% (52) of these 152 cases the cephalic vein received one tributary within the deltopectoral triangle, while in 70% (100) of the specimens it received two. In the remaining 20% (38) of cases the cephalic vein was located deep to the deltopectoral fascia and fat and did not emerge through the deltopectoral triangle but was identified medially to the coracobrachialis and inferior to the medial border of the deltoid. In addition, in 4 (0.2%) of the specimens the cephalic vein, after crossing the deltopectoral triangle, ascended anterior and superior to the clavicle to drain into the subclavian vein. In these specimens a collateral branch was observed to communicate between the cephalic and external jugular veins. In 65.2% (124) of the cases the cephalic vein traveled with the deltoid branch of the thoracoacromial trunk. The length of the cephalic vein within the deltopectoral triangle ranged from 3.5 cm to 8.2 cm with a mean of 4.8 ± 0.7 cm. The morphometric analysis revealed a mean cephalic vein diameter of 0.8 ± 0.1 cm with a range of 0.1 cm to 1.2 cm. The cephalic vein is relatively large and constant, usually allowing for easy cannulation. (Folia Morphol 2008; 67: 72-77

    A multi-machine scaling of halo current rotation

    Get PDF
    Halo currents generated during unmitigated tokamak disruptions are known to develop rotating asymmetric features that are of great concern to ITER because they can dynamically amplify the mechanical stresses on the machine. This paper presents a multi-machine analysis of these phenomena. More specifically, data from C-Mod, NSTX, ASDEX Upgrade, DIII-D, and JET are used to develop empirical scalings of three key quantities: (1) the machinespecific minimum current quench time, τCQ; (2) the halo current rotation duration, trot; and (3) the average halo current rotation frequency, fh . These data reveal that the normalized rotation duration, trot/τCQ, and the average rotation velocity, vh , are surprisingly consistent from machine to machine. Furthermore, comparisons between carbon and metal wall machines show that metal walls have minimal impact on the behavior of rotating halo currents. Finally, upon projecting to ITER, the empirical scalings indicate that substantial halo current rotation above fh = 20 Hz is to be expected. More importantly, depending on the projected value of τCQ in ITER, substantial rotation could also occur in the resonant frequency range of 6–20 Hz. As such, the possibility of damaging halo current rotation during unmitigated disruptions in ITER cannot be ruled out.EURATOM 633053RCUK Energy Programme EP/ I501045Princeton University DE-AC02-09CH1146

    Black holes in which the electrostatic or scalar equation is solvable in closed form

    Full text link
    We show that the method used in the Schwarzschild black hole for finding the elementary solution of the electrostatic equation in closed form cannot extend in higher dimensions. By contrast, we prove the existence of static, spherically symmetric geometries with a non-degenerated horizon in which the static scalar equation can be solved in closed form. We give the explicit results in 6 dimensions. We determine moreover the expressions of the electrostatic potential and of the static scalar field for a point source in the extremal Reissner-Nordstrom black holes in higher dimensions.Comment: 20 pages, no figur

    Fast Searching in Packed Strings

    Get PDF
    Given strings PP and QQ the (exact) string matching problem is to find all positions of substrings in QQ matching PP. The classical Knuth-Morris-Pratt algorithm [SIAM J. Comput., 1977] solves the string matching problem in linear time which is optimal if we can only read one character at the time. However, most strings are stored in a computer in a packed representation with several characters in a single word, giving us the opportunity to read multiple characters simultaneously. In this paper we study the worst-case complexity of string matching on strings given in packed representation. Let mnm \leq n be the lengths PP and QQ, respectively, and let σ\sigma denote the size of the alphabet. On a standard unit-cost word-RAM with logarithmic word size we present an algorithm using time O\left(\frac{n}{\log_\sigma n} + m + \occ\right). Here \occ is the number of occurrences of PP in QQ. For m=o(n)m = o(n) this improves the O(n)O(n) bound of the Knuth-Morris-Pratt algorithm. Furthermore, if m=O(n/logσn)m = O(n/\log_\sigma n) our algorithm is optimal since any algorithm must spend at least \Omega(\frac{(n+m)\log \sigma}{\log n} + \occ) = \Omega(\frac{n}{\log_\sigma n} + \occ) time to read the input and report all occurrences. The result is obtained by a novel automaton construction based on the Knuth-Morris-Pratt algorithm combined with a new compact representation of subautomata allowing an optimal tabulation-based simulation.Comment: To appear in Journal of Discrete Algorithms. Special Issue on CPM 200

    Thermally assisted magnetization reversal in the presence of a spin-transfer torque

    Full text link
    We propose a generalized stochastic Landau-Lifshitz equation and its corresponding Fokker-Planck equation for the magnetization dynamics in the presence of spin transfer torques. Since the spin transfer torque can pump a magnetic energy into the magnetic system, the equilibrium temperature of the magnetic system is ill-defined. We introduce an effective temperature based on a stationary solution of the Fokker-Planck equation. In the limit of high energy barriers, the law of thermal agitation is derived. We find that the N\'{e}el-Brown relaxation formula remains valid as long as we replace the temperature by an effective one that is linearly dependent of the spin torque. We carry out the numerical integration of the stochastic Landau-Lifshitz equation to support our theory. Our results agree with existing experimental data.Comment: 5 figure

    Dimensional Dependence of Black Hole Formation in Self-Similar Collapse of Scalar Field

    Get PDF
    We study classical and quantum self-similar collapses of a massless scalar field in higher dimensions, and examine how the increase in the number of dimensions affects gravitational collapse and black hole formation. Higher dimensions seem to favor formation of black hole rather than other final states, in that the initial data space for black hole formation enlarges as dimension increases. On the other hand, the quantum gravity effect on the collapse lessens as dimension increases. We also discuss the gravitational collapse in a brane world with large but compact extra dimensions.Comment: Improved a few arguments and added a figur

    Constraining Primordial Non-Gaussianity with High-Redshift Probes

    Get PDF
    We present an analysis of the constraints on the amplitude of primordial non-Gaussianity of local type described by the dimensionless parameter fNLf_{\rm NL}. These constraints are set by the auto-correlation functions (ACFs) of two large scale structure probes, the radio sources from NRAO VLA Sky Survey (NVSS) and the quasar catalogue of Sloan Digital Sky Survey Release Six (SDSS DR6 QSOs), as well as by their cross-correlation functions (CCFs) with the cosmic microwave background (CMB) temperature map (Integrated Sachs-Wolfe effect). Several systematic effects that may affect the observational estimates of the ACFs and of the CCFs are investigated and conservatively accounted for. Our approach exploits the large-scale scale-dependence of the non-Gaussian halo bias. The derived constraints on {fNLf_{\rm NL}} coming from the NVSS CCF and from the QSO ACF and CCF are weaker than those previously obtained from the NVSS ACF, but still consistent with them. Finally, we obtain the constraints on fNL=53±25f_{\rm NL}=53\pm25 (1σ1\,\sigma) and fNL=58±24f_{\rm NL}=58\pm24 (1σ1\,\sigma) from NVSS data and SDSS DR6 QSO data, respectively.Comment: 16 pages, 8 figures, 1 table, Accepted for publication on JCA

    Interstellar MHD Turbulence and Star Formation

    Full text link
    This chapter reviews the nature of turbulence in the Galactic interstellar medium (ISM) and its connections to the star formation (SF) process. The ISM is turbulent, magnetized, self-gravitating, and is subject to heating and cooling processes that control its thermodynamic behavior. The turbulence in the warm and hot ionized components of the ISM appears to be trans- or subsonic, and thus to behave nearly incompressibly. However, the neutral warm and cold components are highly compressible, as a consequence of both thermal instability in the atomic gas and of moderately-to-strongly supersonic motions in the roughly isothermal cold atomic and molecular components. Within this context, we discuss: i) the production and statistical distribution of turbulent density fluctuations in both isothermal and polytropic media; ii) the nature of the clumps produced by thermal instability, noting that, contrary to classical ideas, they in general accrete mass from their environment; iii) the density-magnetic field correlation (or lack thereof) in turbulent density fluctuations, as a consequence of the superposition of the different wave modes in the turbulent flow; iv) the evolution of the mass-to-magnetic flux ratio (MFR) in density fluctuations as they are built up by dynamic compressions; v) the formation of cold, dense clouds aided by thermal instability; vi) the expectation that star-forming molecular clouds are likely to be undergoing global gravitational contraction, rather than being near equilibrium, and vii) the regulation of the star formation rate (SFR) in such gravitationally contracting clouds by stellar feedback which, rather than keeping the clouds from collapsing, evaporates and diperses them while they collapse.Comment: 43 pages. Invited chapter for the book "Magnetic Fields in Diffuse Media", edited by Elisabete de Gouveia dal Pino and Alex Lazarian. Revised as per referee's recommendation

    'Education, education, education' : legal, moral and clinical

    Get PDF
    This article brings together Professor Donald Nicolson's intellectual interest in professional legal ethics and his long-standing involvement with law clinics both as an advisor at the University of Cape Town and Director of the University of Bristol Law Clinic and the University of Strathclyde Law Clinic. In this article he looks at how legal education may help start this process of character development, arguing that the best means is through student involvement in voluntary law clinics. And here he builds upon his recent article which argues for voluntary, community service oriented law clinics over those which emphasise the education of students

    Toward an internally consistent astronomical distance scale

    Full text link
    Accurate astronomical distance determination is crucial for all fields in astrophysics, from Galactic to cosmological scales. Despite, or perhaps because of, significant efforts to determine accurate distances, using a wide range of methods, tracers, and techniques, an internally consistent astronomical distance framework has not yet been established. We review current efforts to homogenize the Local Group's distance framework, with particular emphasis on the potential of RR Lyrae stars as distance indicators, and attempt to extend this in an internally consistent manner to cosmological distances. Calibration based on Type Ia supernovae and distance determinations based on gravitational lensing represent particularly promising approaches. We provide a positive outlook to improvements to the status quo expected from future surveys, missions, and facilities. Astronomical distance determination has clearly reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press (chapter 8 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age
    corecore