
Journal of Discrete Algorithms 9 (2011) 49–56

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Contents lists available at ScienceDirect

Journal of Discrete Algorithms

www.elsevier.com/locate/jda

Fast searching in packed strings ✩

Philip Bille 1

Technical University of Denmark, Kgs. Lyngby, Denmark

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 16 September 2010

Keywords:
String matching
Word RAM
Knuth–Morris–Pratt algorithm

Given strings P and Q the (exact) string matching problem is to find all positions of
substrings in Q matching P . The classical Knuth–Morris–Pratt algorithm [SIAM J. Comput.
6 (2) (1977) 323–350] solves the string matching problem in linear time which is optimal
if we can only read one character at the time. However, most strings are stored in a
computer in a packed representation with several characters in a single word, giving us
the opportunity to read multiple characters simultaneously. In this paper we study the
worst-case complexity of string matching on strings given in packed representation. Let
m � n be the lengths P and Q , respectively, and let σ denote the size of the alphabet. On
a standard unit-cost word-RAM with logarithmic word size we present an algorithm using
time

O

(
n

logσ n
+ m + occ

)
.

Here occ is the number of occurrences of P in Q . For m = o(n) this improves the
O (n) bound of the Knuth–Morris–Pratt algorithm. Furthermore, if m = O (n/ logσ n) our
algorithm is optimal since any algorithm must spend at least Ω(

(n+m) logσ
logn + occ) =

Ω(n
logσ n + occ) time to read the input and report all occurrences. The result is obtained

by a novel automaton construction based on the Knuth–Morris–Pratt algorithm combined
with a new compact representation of subautomata allowing an optimal tabulation-based
simulation.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Given strings P and Q of length m and n, respectively, the (exact) string matching problem is to report all positions of sub-
strings in Q matching P . The string matching problem is perhaps the most basic problem in combinatorial pattern matching
and also one of the most well-studied, see e.g., [18,10,16,8] for classical textbook algorithms and the surveys in [15,22]. The
first worst-case O (n) algorithm (we assume w.l.o.g. that m � n) is the classical Knuth–Morris–Pratt algorithm [18]. If we
assume that we can read only one character at the time this bound is optimal since we need Ω(n) time to read the input.
However, most strings are stored in a computer in a packed representation with several characters in a single word. For
instance, DNA-sequences have an alphabet of size 4 and are therefore typically stored using 2 bits per character with 32
characters in a 64-bit word. On packed strings we can read multiple characters in constant time and hence potentially do
better that the Ω(n) lower bound for string matching. In this paper we study the worst-case complexity of packed string
matching and present an algorithm to beat the Ω(n) lower bound for almost all combinations of m and n.

✩ An extended abstract of this paper appeared at the 20th Annual Symposium on Combinatorial Pattern Matching.
E-mail address: phbi@imm.dtu.dk.

1 Supported by the Danish Agency for Science, Technology, and Innovation.
1570-8667/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2010.09.003

https://core.ac.uk/display/82661841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jda.2010.09.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jda
mailto:phbi@imm.dtu.dk
http://dx.doi.org/10.1016/j.jda.2010.09.003

50 P. Bille / Journal of Discrete Algorithms 9 (2011) 49–56
1.1. Setup and results

We assume a standard unit-cost word RAM with word length w = Θ(log n) and a standard instruction set including
arithmetic operations, bitwise boolean operations, and shifts. The space complexity is the number of words used by the
algorithm, not counting the input which is assumed to be read-only. All strings in this paper are over an alphabet Σ of
size σ . The packed representation of a string A is obtained by storing Θ(log n/ logσ) characters per word thus representing
A in O (|A| logσ/ log n) = O (|A|/ logσ n) words. If A is given in the packed representation we simply say that A is a packed
string. The packed string matching problem is defined as above except that P and Q are packed strings. In the worst case any
algorithm for packed string matching must examine all of the words in the packed representation of the input strings. The
algorithm must also report all occurrences of P in Q and therefore must spend at least Ω(n

logσ n + occ) time, where occ
denotes the number of occurrences of P in Q . In this paper we present an algorithm with the following complexity.

Theorem 1. For packed strings P and Q of length m and n, respectively, with characters from an alphabet of size σ , we can solve the
packed string matching problem in time O (n

logσ n + m + occ) and space O (nε + m) for any constant ε, 0 < ε < 1.

For m = o(n) this improves the O (n) bound of the Knuth–Morris–Pratt algorithm. Furthermore, if m = O (n/ logσ n) our
algorithm matches the lower bound and is therefore optimal. In practical situations m is typically much smaller than n and
therefore this condition is almost always satisfied.

1.2. Techniques

The KMP-algorithm [18] may be viewed as simulating an automaton K according to the characters from Q in a left-to-
right order. At each character in Q we use K to maintain the longest prefix of P matching the current suffix of Q . Several
improvements of automaton simulation based algorithms are known, see e.g. [19,21,8,27]. Typically, these algorithms parti-
tion the automaton into many small subautomata which can then be quickly simulated fast using either precomputed and
tabulated information and/or the arithmetic and logical operations of the machine. The idea is then to use the fast simula-
tion for the small subautomata to obtain a faster simulation of the entire automata. This approach is often called the “Four
Russian Technique” [5] when tabulation is used and “word-level parallelism” or “bitparallelism” [6] when only arithmetic
and logical instructions are used. There are (at least) two central components needed to make this approach effective. First,
the partition into subautomata should allow for efficient distribution of the computation among the subautomata. Secondly,
for tabulation or word-level parallelism to work efficiently the subautomata must be encoded compactly.

If we attempt to apply this idea to the KMP-algorithm the above challenges pose major problems. First, the structure of
the transitions in K does not in general allow us to partition K into subautomata such that a simulation does not change
subautomata too often. Indeed, for any partition we might be forced to repeatedly change subautomaton after every group
of O (1) characters of Q and hence end up using Ω(n) time. Secondly, even if we could design a suitable partition of K
into subautomata, a compact encoding of the transitions of a subautomata is non-trivial to obtain. An explicit list of such
transitions will not suffice to achieve the bound of Theorem 1. The main contribution of this paper are two new ideas to
overcome these problems.

First, we present the segment automaton, C , derived from K . In C , the states of K are grouped into overlapping intervals
of r = Θ(log n/ logσ) states from K such that (almost all of) the states in K are duplicated in C . We show how to selec-
tively “copy” the transitions from K to C such that the total number of transitions between subautomata never exceeds
O (n/r) in the simulation on Q . Secondly, we show how to exploit structural properties of the transitions to represent sub-
automata optimally. This allows us to tabulate paths of transitions for all subautomata of size <r using O (σ r + m) space
and preprocessing time. Plugging in r = ε log n/ logσ , for constant ε > 0, this is O (nε + m) space and preprocessing time.
The simulation can then be performed in time O (n/r + occ) = O (n/ logσ n + occ) leading to Theorem 1.

This main contribution of this paper is theoretical, however, we believe that both the segment automaton and the
compact representation of automata may prove very useful in practice if combined with ideas from other algorithms for
packed matching.

1.3. Related work

Exploiting packed string representations to speed-up string matching is not a new idea and is even mentioned in the
early papers by Knuth et al. and Boyer and Moore [18,10]. More recently, several packed string matching algorithms have
appeared [7,24,13,14,17,12,11]. However, none of these improve the worst-case O (n) bound of the classical KMP-algorithm.

It is possible to extend the “super-alphabet” technique by Fredriksson [13,14] to obtain a simple trade-off for packed
string matching. The idea is to build an automaton that, similar to the KMP-automaton, maintains the longest prefix of
P matching the current suffix of Q but allows Q to be processed in groups of r characters. Each state has σ r outgoing
transitions corresponding to all combinations of r characters. This algorithm uses O (n/r + mσ r) time and O (mσ r) space.
Choosing r = ε logσ n this is O (n/ logσ n + mnε) time and O (mnε) space. Compared to Theorem 1 this is a factor Θ(m)

worse in space and only improves the O (n) time bound of the KMP-algorithm when m = o(n1−ε).

P. Bille / Journal of Discrete Algorithms 9 (2011) 49–56 51
Packed string matching is closely related to the area of compressed pattern matching introduced by Amir and Benson [3,2].
Here the goal is to search for an uncompressed pattern in a compressed text without decompressing it first. Furthermore, the
search should be faster than the naive approach of decompressing the text first and then using the fastest algorithm for the
uncompressed problem. In fully compressed pattern matching the pattern is also given in compressed form. Several algorithms
for (fully) compressed string matching are known, see e.g., the survey by Rytter [23]. For instance, if Q is compressed with
the Ziv–Lempel–Welch scheme [26] into a string Z of length z, Amir et al. [4] showed how to find all occurrences of P in
time O (m2 + z). The packed representation of a string may be viewed as the most basic way to compress a string. Hence,
in this perspective we are studying the fully compressed string matching problem for packed strings. Note that our result is
optimal if the pattern is not packed.

As mentioned above, speeding up automaton based algorithms for string matching is a well-known idea that has been
successfully applied to a number of string matching problems. For instance, Myers [21] showed how speed up the simulation
of Thompson’s [25] automaton construction for the regular expression matching problem. The improvement here is from
updating a set of states in a non-deterministic automaton efficiently, whereas we obtain an improvement by processing
multiple characters quickly. With few exceptions, see e.g., [19,9], most of the known improvements of automata-based
algorithms are based on updating sets of states.

1.4. Outline

We first briefly review the KMP-algorithm and how it can be viewed as simulating an automaton in Section 2. We then
present the two major components of our algorithm. Specifically, in Section 3 we present the segment automaton and in
Section 4 we show how to compactly represent and efficiently tabulate subautomata. In Section 5 we put the components
together and present the complete algorithm. Finally, in Section 6 we conclude with some remarks and open problems.

2. The Knuth–Morris–Pratt automaton and string matching

We briefly review the KMP-algorithm [18] which will be the starting point of our new algorithm. The algorithm that we
describe and use is a slightly simpler version of the KMP-algorithm, often referred to as the “Morris–Pratt” algorithm [20],
which suffices to achieve our results.

Let A be a string of length |A| on an alphabet Σ . The character at position i in A is denoted A[i] and the substring from
position i to j is denoted by A[i, j]. The substrings A[1, j] and A[i, |A|] are the prefixes and suffixes of A, respectively.

The Knuth–Morris–Pratt automaton (KMP-automaton), denoted K (P), for P consists of m + 1 states identified by the
integers {0, . . . ,m} each corresponding to a prefix of P . From state s to state s + 1, 0 � s < m there is a forward transition
labeled P [s]. We call the rightmost forward transition from m − 1 to m the accepting transition. From state s, 0 < s � m,
there is a failure transition to a state denoted fail(s) such that P [1, fail(s)] is the longest prefix of P matching a proper suffix
of P [1, s]. Fig. 1(a) depicts the KMP-automaton for the pattern P = ababca.

The failure transitions form a tree with root in state 0 and with the property that fail(s) < s for any state s. Since
the longest prefixes of P [1, s] and P [1, s + 1] matching a suffix of P can increase by at most one character we have the
following property of failure transitions.

Lemma 1. Let P be a string of length m and K (P) be the KMP-automaton for P . For any state 1 < s < m, fail(s + 1) � fail(s) + 1.

We will exploit this property in Section 4.1 to compactly encode subautomata of the KMP-automaton. The KMP-
automaton can be constructed in time O (m) [18].

To find the occurrences of P in Q we read the characters of Q from left-to-right while traversing K (P) to maintain the
longest prefix of P matching a suffix of the current prefix of Q as follows. Initially, we set the state of K (P) to 0. Suppose
that we are in state s after reading the k − 1 characters of Q , i.e., the longest prefix of P matching a suffix of Q [1,k − 1] is
P [1, s]. We process the next character α = Q [k] as follows. If α matches the label of the forward transition from s the next
state is s + 1. Furthermore, if this transition is the accepting transition then k is the endpoint of a substring of Q matching
P and we therefore report an occurrence. Otherwise, (α does not match the label of the forward transition from s to s + 1)
we recursively follow failure transitions from s until we find a state s′ whose forward transition is labeled α in which case
the next state is s′ + 1, or if no such state exist we set the next state to be 0. We define the simulation of K (P) on Q to be
sequence of transitions traversed by the algorithm.

Each time the simulation on Q follows a forward transition we continue to the next character and hence the total
number of forward transitions is at most n. Each failure transition strictly decreases the current state number while forward
transitions increase the state number by 1. Since we start in state 0 the number of failure transition is therefore at most
the number of forward transitions. Hence, the total number of transitions is at most 2n and therefore the searching takes
O (n) time. In total the KMP-algorithm uses time O (n + m) = O (n).

52 P. Bille / Journal of Discrete Algorithms 9 (2011) 49–56
Fig. 1. (a) The Knuth–Morris–Pratt automaton K (P) for the pattern P = ababca. Solid lines are forward transitions and dashed lines are failure transitions.
(b)–(c) The corresponding segment automaton C(P ,4) for P consisting of 3 segments with 4, 4, and 3 states. The light transitions are shown in (b) and
the heavy transition transitions in (c).

3. The segment automaton

In this section we introduce a simple automaton called the segment automaton. The segment automaton for P is equiv-
alent to K (P) in the sense that the simulation on Q at each step provides the longest prefix P matching a suffix of the
current prefix of Q . The segment automaton gives a decomposition of K (P) into subautomata of a given size r such that the
simulation on Q passes through at most O (n/r) subautomata. In our packed string matching algorithm, we will simulate
the segment automaton using a fast algorithm for simulating subautomata of size r = Θ(logσ n), leading to the bound of
Theorem 1.

Let K = K (P) be the KMP-automaton for P . For an even integer parameter r, 1 < r � m + 1 we define the segment
automaton with parameter r, denoted C(P , r), as follows. Define a segment S to be an interval S = [l, r], 0 � l � r � m, of
states in K (P) and let |S| = r − l + 1 denote the size of S . Divide the m + 1 states of K into a set of z = 2�(m + 1)/r� + 1
overlapping segments, denoted S S = {S0, . . . , Sz−1}, where Si = [li, ri] is defined by

li = i · r

2
, ri = min(li + r − 1,m).

Thus, each segment in S S consists of r consecutive states from K , except the last segment, Sz−1, which may be smaller. Any
state s in K appears in at most 2 segments and adjacent segments share r/2 states.

The segment automaton C = C(P , r) is obtained by adding |S| states for each segment S ∈ S S and then selectively
“copying” transitions from K to C . Specifically, the states of C is the set of pairs given by

{
(i, j)

∣∣ 0 � i < z, 0 � j < |Si|
}
.

We view each state (i, j) of C as the jth state of the ith segment, i.e., state (i, j) corresponds to the state li + j in K . Hence,
each state in K is represented by 1 or 2 states in C and each state in C uniquely corresponds to a state in K .

We copy transitions from K to C in the following way. Let t = (s, s′) be a transition in K . For each segment Si such that
s ∈ [li, ri] we have the following transitions in C :

• If s′ ∈ [li, ri] there is a light transition from (i, s − li) to (i, s′ − li).

P. Bille / Journal of Discrete Algorithms 9 (2011) 49–56 53
• If s′ /∈ [li, ri] there is a heavy transition from (i, s − li) to (i′, s′ − li′), where either Si′ is the unique segment containing s′
or if two segments contain s, then Si′ is the segment such that s′ ∈ [li′ , li′ + r/2], i.e., the segment containing s′ in the
leftmost half.

If t is a forward transition with label α ∈ Σ it is also a forward transition in C with label α, if t is a failure transition
it is also a failure transition in C , and if t is the accepting transition it is also an accepting transition in C . The segment
automaton with r = 4 corresponding to the KMP-automaton of Fig. 1(a) is shown in Fig. 1(b) and (c) showing the light
and heavy transitions, respectively. From the correspondence between C and K we have that each accepting transition in a
simulation of C on Q corresponds to an occurrence of P in Q . Hence, we can solve string matching by simulating C instead
of K .

We will use the following key property of the C .

Lemma 2. For a string P of length m and even integer parameter 1 < r � m + 1, the simulation of the segment automaton, C(P , r),
on a string Q of length n contains at most O (n/r + occ) heavy and accepting transitions.

Proof. Consider the sequence T of transitions in the simulation of C = C(P , r) on Q . Let Naccept denote the number of
accepting transitions, and let Nhforward and Nhfail denote the number of heavy forward and heavy failure transitions, respec-
tively. Each accepting transition in T corresponds to an occurrence and therefore Naccept = occ. For a state (i, j) in C we
will refer to i as the segment number. Since a forward transition in K increases the state number by 1 in K a heavy forward
transition increases the segment number by 1 or 2 in C . A heavy failure transition strictly decrease the segment number.
Hence, since we start the simulation in segment 0, we can have at most 2 heavy failure transitions for each heavy forward
transition in T and therefore

Nhfail � 2Nhforward. (1)

If Nhforward = 0 the results trivially follows. Hence, suppose that Nhforward > 0. Before the first heavy forward transition in
T there must be at least r − 1 light transitions in order to reach state (0, r − 1). Consider the subsequence of transitions t in
T between an arbitrary heavy transition h and a forward heavy transition f . The heavy transition h cannot end in segment
z − 1 since there is no heavy forward transition from here. All other heavy transitions have an endpoint in the leftmost
half of a segment and therefore at least r − 1/2 light transitions are needed before a heavy forward transition can occur.
Recall that the total number of transition in T is at most 2n and therefore the number of heavy forward transitions in T is
bounded by

Nhforward � 2n/(r − 1/2) = 4n/r − 1. (2)

Combining the bound on Naccept with (1) and (2) we have that the total number of heavy and accepting transitions is

Nhforward + Nhfail + Naccept � 3Nhforward + occ = O (n/r + occ). �
4. Representing segments

We now describe how to efficiently encode segments how to use the encoding to efficiently tabulate transitions within
segments. In the following section, we show how to combine this with a simulation of the segment automaton, leading to
the full algorithm for packed string matching.

4.1. A compact encoding

Let S be a segment with r states over an alphabet of size σ . We show how to compactly represent all light transitions in
S using O (r logσ) bits. To represent forward transitions we simply store the labels of the r − 1 light forward transitions in
S using (r − 1) logσ = O (r logσ) bits. Next consider the failure transitions. A straightforward approach is to explicitly store
for each state s ∈ S a bit indicating if its failure pointer is light or heavy and, if it is light, a pointer to fail(s). Each pointer
requires �log r� bits and hence the total cost for this representation is O (r log r) bits. We show how to improve this to O (r)
bits in the following.

First, we locally enumerate the states in S to [0, r − 1]. Let I = {i1, . . . , i	}, 0 � i1 < · · · < i	 < r, be the set of states in
S with a light failure transition and let F = { f i1 , . . . , f i	 } be the set of failure pointers for the states in I . We encode I as
a bit string B I of length r such that B I [j] = 1 iff j ∈ I . This uses r bits. To represent F compactly we encode f i1 and the
sequence of differences between consecutive elements D = di2 , . . . ,di	 , where di j = f i j − f i j−1 . We represent f i1 explicitly
using �log r� bits. Our representation of D consists of 2 bit strings. The first string, denoted B D , is the concatenation of the
binary encoding of the numbers in D , i.e., B D = bin(di2) · · · bin(di), where bin(·) denotes standard two’s complement binary
encoding (the differences may be negative) and · denotes concatenation. Each number d j uses at most 1 + log |d j | bits and
therefore the size of the B D is at most

54 P. Bille / Journal of Discrete Algorithms 9 (2011) 49–56
|B D | �
∑
j∈I ′

(∣∣log(d j)
∣∣ + 1

)
< r +

∑
j∈I ′

∣∣log(d j)
∣∣, (3)

where I ′ = I\{i1}. The second bit string, denoted B D ′ , represents the boundaries of the numbers in B D , i.e., B D ′ [k] = 1 iff
k is the start of a new number in B D . Thus, |B D ′ | = |B D |. Note that with f1, B D , and B D ′ we can uniquely decode F . The
total size of the representation is �log r� + 2|B D | bits.

To bound the size of the representation we show that |B D | = O (r) implying that the representation uses �log r� + 2 ·
O (r) = O (r) bits as desired. We first bound the sum

∑
j∈I ′ |d j |. Recall from Lemma 1 that the failure function increases by

at most 1 between consecutive states in K . Hence, over the subsequence F of <r of failure pointers in the range [0, r −1] the
total increase of the failure function can be at most r. Hence,

∑
j∈I ′ d j � r. Furthermore, if f1 = x, for some x ∈ [0, r − 1], the

total decrease of F over a segment of r states is at most x plus the total increase and therefore
∑

j∈I ′ d j � −(x + r) � −2r.
Hence,

∑
j∈I ′

|d j| � 2r. (4)

Combining (3) and (4) we have that

|B D | < r +
∑
j∈I ′

log |d j| � r + |I ′| log

(∑
j∈I ′ |d j|
|I ′|

)

< r + r log(2r/r) = O (r).

The second inequality follows from Jensen’s inequality combined with the fact that the logarithm is a concave function. In
summary, we have the following result.

Lemma 3. All light forward and failure transitions of a segment of size r can be encoded using O (r logσ) bits.

4.2. Simulating light transitions

We now show how to efficiently simulate multiple light transition within segments. First, we first introduce a number
of important concepts.

Let C = C(P , r) be the segment automaton, and consider the path p of states in the simulation on C from a state (i, j)
on some string q. Define the longest light path from (i, j) on q to be the longest prefix of p consisting entirely of light
non-accepting transitions in segment i. Furthermore, define the string length of p to be number of forward transitions in p,
i.e., the number of characters of q traversed in p. For example, consider state (1,1) in segment 1 in Fig. 1. The longest light
path on the string q = bac is the path p = (1,1), (1,2), (1,0), (1,1). The transition on c from state (1,1) is a heavy failure
transition and therefore not included in p. The string of p is 2.

Our goal is to quickly compute the string length and endpoint of longest light paths. Let Senc be the compact encoding
of a segment S as described above including the label of the forward heavy transition from the rightmost state in S (if any)
and a bit indicating whether or not the rightmost light transition is accepting or not. Furthermore, let j be a state in S , let
q be a string, and define

Next(Senc, j,q): Return the pair (l, j′), where l and j′ is the string length and final state, respectively, of the longest light
path in S from j matching a prefix of q.

For example, if Senc is the encoding of segment 1 in Fig. 1, then Next(Senc,1,bac) returns the pair (2,1).
We will efficiently tabulate Next for arbitrary strings q of length r − 1 (the maximum number of light forward transitions

in a segment of size r) as follows. Let b be the total number of bits needed to represent the input to Next. The string q
uses (r − 1)�logσ � bits and by Lemma 3 Senc uses O (r logσ + logσ + 1) = O (r logσ) bits. Furthermore, the state number j
uses �log r� bits and hence b = O (r logσ + log r) = O (r logσ).

We tabulate all possible results for Next using a table T containing 2b entries as follows. Let Z be any input to Next

encoded using the above b bit representation and let num(Z) denote the non-negative integer in [0,2b − 1] represented
by Z . The table stores at position T [num(Z)] the result of Next on input Z . We compute each entry using a standard
simulation in O (r) time and therefore we construct T in 2b · O (r) = 2O (b) time and space. Hence, if we have t < 2w space
available for T we may set r = 1

c · log t
logσ , where c > 0 is an upper bound on the constant appearing in the 2O (b) expression

above. Hence, the total space and preprocessing time now becomes 2O (b) = 2
1
c

c log t
logσ logσ = O (t).

With T precomputed and stored in memory we can now answer arbitrary Next queries for arbitrary encoded segments
and strings of length at most r − 1 in constant time by table lookup.

P. Bille / Journal of Discrete Algorithms 9 (2011) 49–56 55
5. The algorithm

We now put the pieces from the previous sections together to obtain our main result of Theorem 1. Assume that we
have t < 2w space available and choose r = Θ(log t/ logσ) as above for the tabulation. We first preprocess P by computing
the following information:

• The segment automaton C(P , r) with parameter r and z = 2�m + 1/r� + 1 segments S S = {S0, . . . , Sz−1}.
• The compact encoding Senc for each segment S ∈ S S .
• The tabulated Next function for segments with r states and input string of length r − 1.

We compute the segment automaton and the compact encodings in O (m) time and space. The tabulation for Next uses
O (t) time and space and hence the preprocessing uses O (t + m) time and space.

We find the occurrences of P in Q using the algorithm described below. The main idea is to simulate the segment
automaton using the tabulated Next function with the segment automaton. At each iteration of the algorithm we traverse
light transitions until we either have processed r − 1 characters from Q or encounter a heavy or accepting transition. We
then follow the single next transition and report an occurrence if the transition is accepting. We repeat this process until
we have read all of Q . We note that to implement the algorithm we need to be able to extract any substring of � r − 1
characters from Q quickly even if the substring does not begin at a word boundary. We use standard shifts to extract such
a substring in constant time.

Algorithm S (Packed string search). Let P be a preprocessed string for a parameter r as above. Given a string Q of length n
the algorithm finds all occurrences of P in Q .

S1. [Initialize] Set (i, j) ← (0,0) and k ← 1.
S2. [Do up to r − 1 light transitions] Compute (l, j′) ← Next(Senc

i , j, Q [k,min(k + r − 1,n)]). At this point (i, j′) is the state
in the traversal of C on Q after reading the prefix Q [1,k + l]. All transitions on the string Q [k,k + l] are light and
non-accepting by the definition of Next.

S3. [Done?] If k + l = n then terminate. In this case step S2 exhausted remaining characters from Q .
S4. [Do single transition] Compute (i∗, j∗) by traversing the transition δ from (i, j′) on character Q [k + l + 1]. If δ is a

failure transition, set k∗ ← k + l and otherwise set k∗ ← k + l + 1. If δ is an accepting transition report an occurrence
ending at position k∗ .

S5. [Repeat] Update (i, j) ← (i∗, j∗) and k ← k∗ and repeat from step S2.

For example, consider running Algorithm S on the segment automaton in Fig. 1 with string Q = abacacababca. Here,
r = 4 and we therefore process up to 3 characters from Q in a single iteration. Initially, we start at state (0,0) in step S1. In
step S2, we compute the longest path of light and non-accepting transitions matching Q [1,3] = aba. Since there is such a
path from (0,0) in this segment matching aba, we process all of aba and end at (0,3). Since more characters remain in Q ,
we continue from step S3. In step S4, we traverse the light failure transition from (0,3) to (0,1) since Q [4] = c. In step S5,
we update (i, j) ← (0,1) and k ← 3 and repeat from step S2. In step S2, we process all characters from Q [4,6] = cac
ending in (0,0). In step S4, we traverse the light forward transition from (0,0) to (0,1) on Q [7] = a. In iteration 3,
we process characters Q [8,9] = ba in step S2, ending at state (0,3). The character Q [10] = b is not traversed since the
corresponding transition is heavy. Instead, in step S5, we traverse b to (2,0). In iteration 4, we process the character
Q [11] = c in step S2, ending at (2,1). We cannot traverse the character Q [12] = a since the corresponding transition is
accepting. Step S5 traverses the accepting transition and reports an occurrence. In the final iteration, no light transitions are
traversed in step S2 and the algorithm terminates in step S3.

It is straightforward to verify that Algorithm S simulates C(P , r) on Q and reports occurrences whenever we encounter
an accepting transition. In each iteration we either read r − 1 characters from Q and/or perform a heavy or accepting
transition. We can process r −1 characters from Q on light transitions at most �n/(r − 1)� and by Lemma 2 the total number
of heavy and accepting transitions is O (n/r +occ). Hence, the total number of iterations is O (n/r +occ). Since each iteration
takes constant time this also bounds the running time. Adding the preprocessing time and plugging in r = Θ(log t/ logσ)

the time becomes

O

(
n

r
+ t + m + occ

)
= O

(
n

logσ t
+ t + m + occ

)

with space O (t + m). Hence we have the following result.

Theorem 2. Let P and Q be packed strings of length m and n, respectively. For a parameter t < 2w we can solve the packed string
matching problem in time O (n + t + m + occ) and space O (t + m).
logσ t

56 P. Bille / Journal of Discrete Algorithms 9 (2011) 49–56
Note that the tabulation is independent of P . Hence, if we want to support multiple searches it suffices to precompute
the tables once. If we plugin t = nε , for 0 < ε < 1, we obtain an algorithm using time O (n

logσ (nε)
+nε +m +occ) = O (n

logσ n +
m + occ) and space O (nε + m) thereby showing Theorem 1.

6. Remarks and open problems

We have presented an almost optimal solution for the packed string matching problem on a unit-cost RAM with loga-
rithmic word-length. We conclude with two challenging open problems.

• Our algorithm relies on tabulation to compute the Next function, and therefore its speed is limited by the amount of
space we have for tables. Consequently, it cannot take advantage of a large word length w
 log n. We wonder if it is
possible to obtain a packed string matching algorithm that achieves a speed-up over the KMP-algorithm that depends
on w rather than log n. In particular, it might be possible to come up with an algorithm based on word-level parallelism
(a.k.a. bit parallelism [6]), that uses the arithmetic and logical instructions in the word-RAM instead of tables to perform
the computation.

• It would be interesting to obtain fast algorithms for related packed problems. For instance, we wonder if it is possible
to obtain a similar speed-up for the multi-string matching problem [1]. The Aho–Corasick algorithm [1] for multi-string
matching uses an automaton that generalizes the KMP-automaton, however, it appears difficult to extend our techniques
to this automaton.

References

[1] A.V. Aho, M.J. Corasick, Efficient string matching: an aid to bibliographic search, Commun. ACM 18 (6) (1975) 333–340.
[2] A. Amir, G. Benson, Efficient two-dimensional compressed matching, in: Proceedings of the 2nd Data Compression Conference, 1992, pp. 279–288.
[3] A. Amir, G. Benson, Two-dimensional periodicity and its applications, in: Proceedings of the 3rd Annual ACM–SIAM Symposium on Discrete Algorithms,

1992, pp. 440–452.
[4] A. Amir, G. Benson, M. Farach, Let sleeping files lie: pattern matching in Z-compressed files, J. Comput. System Sci. 52 (2) (1996) 299–307.
[5] V.L. Arlazarov, E.A. Dinic, M.A. Kronrod, I.A. Faradzev, On economic construction of the transitive closure of a directed graph, Dokl. Acad. Nauk 194

(1970) 487–488 (in Russian); English translation in Soviet Math. Dokl. 11 (1975) 1209–1210.
[6] R.A. Baeza-Yates, Efficient text searching, PhD thesis, Dept. of Computer Science, University of Waterloo, 1989.
[7] R.A. Baeza-Yates, Improved string searching, Softw. Pract. Exp. 19 (3) (1989) 257–271.
[8] R. Baeza-Yates, G.H. Gonnet, A new approach to text searching, Commun. ACM 35 (10) (1992) 74–82.
[9] P. Bille, M. Thorup, Faster regular expression matching, in: Proceedings of the 36th International Colloquium on Automata, Languages and Programming,

in: Lecture Notes in Computer Science, vol. 5555, 2009, pp. 171–182.
[10] R.S. Boyer, J.S. Moore, A fast string searching algorithm, Commun. ACM 20 (10) (1977) 762–772.
[11] S. Faro, T. Lecroq, An efficient matching algorithm for encoded DNA sequences and binary strings, in: Proceedings of the 20th Annual Symposium on

Combinatorial Pattern Matching, in: Lecture Notes in Computer Science, vol. 5577, 2009, pp. 106–115.
[12] S. Faro, T. Lecroq, Efficient pattern matching on binary strings, in: Proceedings of the 35th International Conference on Current Trends in Theory and

Practice of Computer Science, 2009.
[13] K. Fredriksson, Faster string matching with super-alphabets, in: Proceedings of the 9th International Symposium on String Processing and Information

Retrieval, in: Lecture Notes in Computer Science, vol. 2476, 2002, pp. 44–57.
[14] K. Fredriksson, Shift-or string matching with super-alphabets, Inf. Process. Lett. 87 (4) (2003) 201–204.
[15] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology, Cambridge University Press, 1997.
[16] R.M. Karp, M.O. Rabin, Efficient randomized pattern-matching algorithms, IBM J. Res. Dev. 31 (2) (1987) 249–260.
[17] S.T. Klein, M. Ben-Nissan, Accelerating Boyer Moore searches on binary texts, in: Proceedings of the 12th International Conference on Implementation

and Application of Automata, in: Lecture Notes in Computer Science, vol. 4783, 2007, pp. 130–143.
[18] D.E. Knuth, J. James, H. Morris, V.R. Pratt, Fast pattern matching in strings, SIAM J. Comput. 6 (2) (1977) 323–350.
[19] W. Masek, M. Paterson, A faster algorithm for computing string edit distances, J. Comput. System Sci. 20 (1980) 18–31.
[20] J. Morris, R.V. Pratt, A linear pattern matching algorithm, Technical Report 40, Univ. of California, Berkeley, 1970.
[21] E.W. Myers, A four-Russians algorithm for regular expression pattern matching, J. ACM 39 (2) (1992) 430–448.
[22] G. Navarro, M. Raffinot, Flexible Pattern Matching in Strings – Practical On-Line Search Algorithms for Texts and Biological Sequences, Cambridge

University Press, ISBN 0-521-81307-7, 2002, 280 pages.
[23] W. Rytter, Algorithms on compressed strings and arrays, in: Proceedings of the 26th Conference on Current Trends in Theory and Practice of Informatics

on Theory and Practice of Informatics, in: Lecture Notes in Computer Science, vol. 1725, 1999, pp. 48–65.
[24] J. Tarhio, H. Peltola, String matching in the DNA alphabet, Softw. Pract. Exp. 27 (1997) 851–861.
[25] K. Thompson, Regular expression search algorithm, Commun. ACM 11 (1968) 419–422.
[26] T.A. Welch, A technique for high-performance data compression, IEEE Computer 17 (6) (1984) 8–19.
[27] S. Wu, U. Manber, E.W. Myers, A subquadratic algorithm for approximate regular expression matching, J. Algorithms 19 (3) (1995) 346–360.

	Fast searching in packed strings
	Introduction
	Setup and results
	Techniques
	Related work
	Outline

	The Knuth-Morris-Pratt automaton and string matching
	The segment automaton
	Representing segments
	A compact encoding
	Simulating light transitions

	The algorithm
	Remarks and open problems
	References

