560 research outputs found

    Higher derivative corrections in holographic Zamolodchikov-Polchinski theorem

    Full text link
    We study higher derivative corrections in holographic dual of Zamolodchikov-Polchinski theorem that states the equivalence between scale invariance and conformal invariance in unitary d-dimensional Poincare invariant field theories. From the dual holographic perspective, we find that a sufficient condition to show the holographic theorem is the generalized strict null energy condition of the matter sector in effective (d+1)-dimensional gravitational theory. The same condition has appeared in the holographic dual of the "c-theorem" and our theorem suggests a deep connection between the two, which was manifested in two-dimensional field theoretic proof of the both.Comment: 13 pages, v2: reference added, v3 some clarification adde

    Strings in Gravimagnetic Fields

    Get PDF
    We provide a complete solution of closed strings propagating in Nappi-Witten space. Based on the analysis of geodesics we construct the coherent wavefunctions which approximate as closely as possible the classical trajectories. We then present a new free field realization of the current algebra using the gamma, beta ghost system. Finally we construct the quantum vertex operators, for the tachyon, by representing the wavefunctions in terms of the free fields. This allows us to compute the three- and four-point amplitudes, and propose the general result for N-point tachyon scattering amplitude.Comment: final version, 29 pages + 4 app

    An Improved Quantum Molecular Dynamics Model and its Applications to Fusion Reaction near Barrier

    Get PDF
    An improved Quantum Molecular Dynamics model is proposed. By using this model, the properties of ground state of nuclei from 6^{6}Li to 208^{208}Pb can be described very well with one set of parameters. The fusion reactions for 40^{40}Ca+90^{90}Zr, 40^{40}Ca+96^{96}Zr and 48^{48}Ca+90^{90}Zr at energy near barrier are studied by this model. The experimental data of the fusion cross sections for 40^{40}Ca+90,96^{90,96}Zr at the energy near barrier can be reproduced remarkably well without introducing any new parameters. The mechanism for the enhancement of fusion probability for fusion reactions with neutron-rich projectile or target is analyzed.Comment: 20 pages, 12 figures, 3 table

    Radiating black hole solutions in arbitrary dimensions

    Full text link
    We prove a theorem that characterizes a large family of non-static solutions to Einstein equations in NN-dimensional space-time, representing, in general, spherically symmetric Type II fluid. It is shown that the best known Vaidya-based (radiating) black hole solutions to Einstein equations, in both four dimensions (4D) and higher dimensions (HD), are particular cases from this family. The spherically symmetric static black hole solutions for Type I fluid can also be retrieved. A brief discussion on the energy conditions, singularities and horizons is provided.Comment: RevTeX 9 pages, no figure

    Unitarity Meets Channel-Duality for Rolling / Decaying D-Branes

    Get PDF
    Investigations for decay of unstable D-brane and rolling of accelerated D-brane dynamics have revealed that various proposed prescriptions give different result for spectral amplitudes and observables. Here, we study them with particular attention to unitarity and open-closed channel duality. From "ab initio" derivation in the open string channel, both in Euclidean and Lorentzian worldsheet approaches, we find heretofore overlooked contribution to the spectral amplitudes and obervables. The contribution is fortuitously absent for decay of unstable D-brane, but is present for rolling of accelerated D-brane. We finally show that the contribution is imperative for ensuring unitarity and optical theorem at each order in string loop expansion.Comment: Latex, 28 pages, 2 figures (colored

    Boundary States for D-branes with Traveling Waves

    Full text link
    We construct boundary states for D-branes which carry traveling waves in the covariant formalism. We compute their vacuum amplitudes to investigate their interactions. In non-compact space, the vacuum amplitudes become trivial as is common in plane wave geometries. However, we found that if they are compactified in the traveling direction, then the amplitudes are affected by non-trivial time dependent effects. The interaction between D-branes with waves traveling in the opposite directions (`pulse-antipulse scattering') are also computed. Furthermore, we apply these ideas to open string tachyon condensation with traveling waves.Comment: 30 pages. 1 figure, Latex, minor corrections, references adde

    Persistent Spin Currents in Helimagnets

    Full text link
    We demonstrate that weak external magnetic fields generate dissipationless spin currents in the ground state of systems with spiral magnetic order. Our conclusions are based on phenomenological considerations and on microscopic mean-field theory calculations for an illustrative toy model. We speculate on possible applications of this effect in spintronic devices.Comment: 9 pages, 6 figures, updated version as published, Journal referenc

    Random walks and polymers in the presence of quenched disorder

    Full text link
    After a general introduction to the field, we describe some recent results concerning disorder effects on both `random walk models', where the random walk is a dynamical process generated by local transition rules, and on `polymer models', where each random walk trajectory representing the configuration of a polymer chain is associated to a global Boltzmann weight. For random walk models, we explain, on the specific examples of the Sinai model and of the trap model, how disorder induces anomalous diffusion, aging behaviours and Golosov localization, and how these properties can be understood via a strong disorder renormalization approach. For polymer models, we discuss the critical properties of various delocalization transitions involving random polymers. We first summarize some recent progresses in the general theory of random critical points : thermodynamic observables are not self-averaging at criticality whenever disorder is relevant, and this lack of self-averaging is directly related to the probability distribution of pseudo-critical temperatures Tc(i,L)T_c(i,L) over the ensemble of samples (i)(i) of size LL. We describe the results of this analysis for the bidimensional wetting and for the Poland-Scheraga model of DNA denaturation.Comment: 17 pages, Conference Proceedings "Mathematics and Physics", I.H.E.S., France, November 200

    Maternal marijuana use has independent effects on risk for spontaneous preterm birth but not other common late pregnancy complications

    Get PDF
    Widespread legalisation of marijuana raises safety concerns for its use in pregnancy. This study investigated the association of marijuana use prior to and during pregnancy with pregnancy outcomes in a prospective cohort of 5588 nulliparous women from the international SCOPE study. Women were assessed at 15 ± 1 and 20 ± 1 weeks’ gestation. Cases [278 Preeclampsia, 470 gestational hypertension, 633 small-for-gestational-age, 236 spontaneous preterm births (SPTB), 143 gestational diabetes] were compared separately with 4114 non-cases. Although the numbers are small, continued maternal marijuana use at 20 weeks’ gestation was associated with SPTB independent of cigarette smoking status [adj OR 2.28 (95% CI:1.45–3.59)] and socioeconomic index (SEI) [adj OR 2.17 (95% CI:1.41–3.34)]. When adjusted for maternal age, cigarette smoking, alcohol and SEI, continued maternal marijuana use at 20 weeks’ gestation had a greater effect size [adj OR 5.44 (95% CI 2.44–12.11)]. Our data indicate that increasing use of marijuana among young women of reproductive age is a major public health concern

    Engineered nonlinear lattices

    Get PDF
    We show that with the quasi-phase-matching technique it is possible to fabricate stripes of nonlinearity that trap and guide light like waveguides. We investigate an array of such stripes and find that when the stripes are sufficiently narrow, the beam dynamics is governed by a quadratic nonlinear discrete equation. The proposed structure therefore provides an experimental setting for exploring discrete effects in a controlled manner. In particular, we show propagation of breathers that are eventually trapped by discreteness. When the stripes are wide the beams evolve in a structure we term a quasilattice, which interpolates between a lattice system and a continuous system.Peer ReviewedPostprint (published version
    • …
    corecore