267 research outputs found

    A computational design of experiments based method for evaluation of off-the-shelf total knee replacement implants

    Get PDF
    A methodology to explore the design space of off-the-shelf total knee replacement implant designs is outlined. Generic femur component and tibia plate designs were scaled to thousands of sizes and virtually fitted to 244 test subjects. Various implant designs and sizing requirements between genders and ethnicities were evaluated. 5 sizes optimised via the methodology produced a good global fit for most subjects. However, clinically significant over/underhang was present in 19% of subjects for tibia plates and 25% for femur components, reducing to 11/20% with 8 sizes. The analysis highlighted subtly better fit performance was obtained using sizes with unequal spacing

    Applying machine learning methods to enable automatic customisation of knee replacement implants from CT data

    Get PDF
    The aim of this study was to develop an automated pipeline capable of designing custom total knee replacement implants from CT scans. The developed pipeline firstly utilised a series of machine learning methods including classification, object detection, and image segmentation models, to extract geometrical information from inputted DICOM files. Statistical shape models then used the information to create femur and tibia 3D surface model predictions which were ultimately used by computer aided design scripts to generate customised implant designs. The developed pipeline was trained and tested using CT scan images, along with segmented 3D models, obtained for 98 Korean Asian subjects. The performance of the pipeline was tested computationally by virtually fitting outputted implant designs with ‘ground truth’ 3D models for each test subject’s bones. This demonstrated the pipeline was capable of repeatably producing highly accurate designs, and its performance was not impacted by subject sex, height, age, or knee side. In conclusion, a robust, accurate and automatic, CT-based total knee replacement customisation pipeline was shown to be feasible and could afford significant time and cost advantages over conventional methods. The pipeline framework could also be adapted to enable customisation of other medical implants

    Particulate lubricants in cosmetic applications

    Get PDF
    Polymer powders are commonly added to cosmetic formulations to improve product performance and skin feel. This study investigates the effect of particle concentration and size on the lubricating properties of powder suspensions. Results are reported for various particle sizes and concentrations. When the tribological contact was fully immersed the addition of particles had no effect. However different behaviour was observed when the contact was only partially lubricated. In this case, a three-stage friction coefficient curve was observed. By varying the particle size and concentration it was shown that the duration and magnitude of each stage can be controlled

    Towards a skin-on-a-chip for screening the dermal absorption of cosmetics

    Get PDF
    Over the past few decades, there have been increasing global efforts to limit or ban the use of animals for testing cosmetic products. This ambition has been at the heart of international endeavours to develop new in vitro and animal-free approaches for assessing the safety of cosmetics. While several of these new approach methodologies (NAMs) have been approved for assessing different toxicological endpoints in the UK and across the EU, there remains an absence of animal-free methods for screening for dermal absorption; a measure that assesses the degree to which chemical substances can become systemically available through contact with human skin. Here, we identify some of the major technical barriers that have impacted regulatory recognition of an in vitro skin model for this purpose and propose how these could be overcome on-chip using artificial cells engineered from the bottom-up. As part of our future perspective, we suggest how this could be realised using a digital biomanufacturing pipeline that connects the design, microfluidic generation and 3D printing of artificial cells into user-crafted synthetic tissues. We highlight milestone achievements towards this goal, identify future challenges, and suggest how the ability to engineer animal-free skin models could have significant long-term consequences for dermal absorption screening, as well as for other applications

    Multifunctional and stretchable graphene/textile composite sensor for human motion monitoring

    Get PDF
    Sensors based on electronic textiles (e-textiles) have become increasingly prominent in the field of biomechanical monitoring technology due to multiple properties such as being lightweight, flexible, and comfortable, with increasing potential in incorporating into long-term monitoring devices. Previous research has been conducted into textile strain sensors based on graphene for human motion monitoring, however most graphene e-textile strain sensors exhibit poor sensitivity and stretchability. To our knowledge, no previous research has looked at knitted graphene-based fabrics in regards to the fabric composition of the substrate. In this paper, we propose a graphene/fabric composite sensor using a cost-effective dip coating method of an acrylic/Spandex knit fabric, and further explores its mechanical, electrical, and sensing properties. The developed graphene/textile composite sensor has a wide sensing range (up to 344%) and exhibits a good sensitivity with a high gauge factor of up to 16. As a wearable sensor, our sensing fabric can detect both large and subtle human motions and is able to distinguish between various ranges of joint movements, demonstrating its ability to function as a human motion monitoring system. Our sensor further exhibits the ability to be used as a supercapacitor or capacitive pressure sensor

    Varieties of Limited Access Orders: The nexus between politics and economics in hybrid regimes

    Get PDF
    This article advances our understanding of differences in hybrid stability by going beyond existing regime typologies that separate the study of political institutions from the study of economic institutions. It combines the work of Douglass North, John Wallis, and Barry Weingast (NWW) on varieties of social orders with the literature on political and economic regime typologies and dynamics to understand hybrid regimes as Limited Access Orders (LAOs) that differ in the way dominant elites limit access to political and economic resources. Based on a measurement of political and economic access applied to seven post‐Soviet states, the article identifies four types of LAOs. Challenging NWW's claim, it shows that hybrid regimes can combine different degrees of political and economic access to sustain stability. Our typology allows to form theoretical expectations about the kinds of political and/or economic changes that will move different types of LAOs toward more openness or closure

    Effects of beverage carbonation on lubrication mechanisms and mouthfeel

    Get PDF
    The perception of carbonation is an important factor in beverage consumption which must be understood in order to develop healthier products. Herein, we study the effects of carbonated water on oral lubrication mechanisms involved in beverage mouthfeel and hence taste perception. Friction was measured in a compliant PDMS-glass contact simulating the tongue-palate interface (under representative speeds and loads), while fluorescence microscopy was used to visualise both the flow of liquid and oral mucosal pellicle coverage. When carbonated water is entrained into the contact, CO2 cavities form at the inlet, which limit flow and thus reduce the hydrodynamic pressure. Under mixed lubrication conditions, when the fluid film thickness is comparable to the surface roughness, this pressure reduction results in significant increases in friction (>300% greater than under non-carbonated water conditions). Carbonated water is also shown to be more effective than non-carbonated water at debonding the highly lubricious, oral mucosal pellicle, which again results in a significant increase in friction. Both these transient mechanisms of starvation and salivary pellicle removal will modulate the flow of tastants to taste buds and are suggested to be important in the experience of taste and refreshment. For example this may be one reason why flat colas taste sweeter

    Transient mixed lubrication model of the human knee implant

    Get PDF
    The human knee implant is computationally modelled in the mixed lubrication regime to investigate the tribological performance of the implant. This model includes the complex geometry of the implant components, unlike elliptical contact models that approximate this geometry. Film thickness and pressure results are presented for an ISO gait cycle to determine the lubrication regime present within the implant during its operation. It was found that it was possible for the lubrication regime to span between elastohydrodynamic, mixed and boundary lubrication depending on the operating conditions of the implant. It was observed that the tribological conditions present in one condyle were not necessarily representative of the other. Multiple points of contact were found within the same condyle, which cannot be computed by the elliptical contact solvers. This model can be used to balance forces in all directions, instead of only the normal loads, as often done in elliptical contact models. This work is an initial step towards understanding the role of the complex geometry in the tribological characteristics of the human knee implant when operating in physiological conditions

    Founder mutations in the Netherlands: geographical distribution of the most prevalent mutations in the low-density lipoprotein receptor and apolipoprotein B genes

    Get PDF
    Background In the Netherlands, a screening programme was set up in 1994 in order to identify all patients with familial hypercholesterolaemia (FH). After 15 years of screening, we evaluated the geographical distribution, possible founder effects and clinical phenotype of the 12 most prevalent FH gene mutations. Methods Patients who carried one of the 12 most prevalent mutations, index cases and those identified between 1994 and 2009 through the screening programme and whose postal code was known were included in the study. Low-density lipoprotein cholesterol (LDL-C) levels at the time of screening were retrieved. The prevalence of identified patients in each postal code area was calculated and visualised in different maps. Results A total of 10,889 patients were included in the study. Mean untreated LDL-C levels ranged from 4.4 to 6.4 mmol/l. For almost all mutations, a region of high prevalence could be observed. In total, 51 homozygous patients were identified in the Netherlands, of which 13 true homozygous for one of the 12 most prevalent mutations. The majority of them were living in high-prevalence areas for that specific mutation. Conclusions Phenotypes with regard to LDL-C levels varied between the 12 most prevalent FH mutations. For most of these mutations, a founder effect was observed. Our observations can have implications with regard to the efficiency of molecular screening and physician's perception of FH and to the understanding of the prevalence and distribution of homozygous patients in the Netherland
    corecore