7 research outputs found

    Tpl2 kinase regulates T cell interferon-γ production and host resistance to Toxoplasma gondii

    Get PDF
    Tpl2 (Tumor progression locus 2), also known as Cot/MAP3K8, is a hematopoietically expressed serine-threonine kinase. Tpl2 is known to have critical functions in innate immunity in regulating tumor necrosis factor–α, Toll-like receptor, and G protein–coupled receptor signaling; however, our understanding of its physiological role in T cells is limited. We investigated the potential roles of Tpl2 in T cells and found that it was induced by interleukin-12 in human and mouse T cells in a Stat4-dependent manner. Deficiency of Tpl2 was associated with impaired interferon (IFN)-γ production. Accordingly, Tpl2−/− mice had impaired host defense against Toxoplasma gondii with reduced parasite clearance and decreased IFN-γ production. Furthermore, reconstitution of Rag2−/− mice with Tpl2-deficient T cells followed by T. gondii infection recapitulated the IFN-γ defect seen in the Tpl2-deficient mice, confirming a T cell–intrinsic defect. CD4+ T cells isolated from Tpl2−/− mice showed poor induction of T-bet and failure to up-regulate Stat4 protein, which is associated with impaired TCR-dependent extracellular signal-regulated kinase activation. These data underscore the role of Tpl2 as a regulator of T helper cell lineage decisions and demonstrate that Tpl2 has an important functional role in the regulation of Th1 responses

    Unprecedented diversity of genotypic revertants in lymphocytes of a patient with Wiskott-Aldrich syndrome

    No full text
    Spontaneous somatic reversions of inherited mutations are poorly understood phenomena that are thought to occur uncommonly in a variety of genetic disorders. When molecularly characterized, revertant cells have rarely exhibited more than one revertant genotype per patient. We analyzed individual allospecific T-cell clones derived from a Wiskott-Aldrich syndrome (WAS) patient identified by flow cytometry to have 10% to 15% revertant, WAS protein–expressing lymphocytes in his blood. Genotypic analysis of the clones revealed a remarkable diversity of deletions and base substitutions resulting in at least 34 different revertant genotypes that restored expression of WASp. A large fraction of these revertant genotypes were also identified in primary T cells purified from peripheral blood. These data suggest that the use of sensitive methods may reveal the presence of wide arrays of individual genotypic revertants in WAS patients and offer opportunities for further understanding of their occurrence
    corecore