27 research outputs found

    Model refinements and experimental testing of highly flexible piezoelectric energy harvesters

    Get PDF
    This paper addresses limitations to existing analytical models for piezoelectric energy harvesters. The presented model is targeted at predicting behaviours of highly flexible piezoelectric devices (FPEDs) and includes high orders of substrate and piezoelectric material nonlinearity, geometric nonlinearity, and additionally the effects of both self-weight and pre-stress. Validation through experimental testing is provided. The influence of self-weight on vibratory dynamics becomes important in FPEDs due to both material composition and dimension. The developed model facilitates the simulation of FPED performance mounted at specified angles to the horizontal. In one study, for a FPED of 120 mm in length, the resonant frequency changed by over 30 percent with mounting angle. Consideration of mounting orientation is advised as self-weight increases damping and significantly lowers FPED performance – over a 50 percent reduction in one presented case

    Ступінь приверженості до лікування та його ефективність у пацієнтів з гіпертонічною хворобою залежно від способу життя

    Get PDF
    Vitamin C is a widely used vitamin. Here we review the occurrence and properties of aldonolactone oxidoreductases, an important group of flavoenzymes responsible for the ultimate production of vitamin C and its analogs in animals, plants, and single-cell organisms

    Circadian oscillator proteins across the kingdoms of life : Structural aspects 06 Biological Sciences 0601 Biochemistry and Cell Biology

    Get PDF
    Circadian oscillators are networks of biochemical feedback loops that generate 24-hour rhythms and control numerous biological processes in a range of organisms. These periodic rhythms are the result of a complex interplay of interactions among clock components. These components are specific to the organism but share molecular mechanisms that are similar across kingdoms. The elucidation of clock mechanisms in different kingdoms has recently started to attain the level of structural interpretation. A full understanding of these molecular processes requires detailed knowledge, not only of the biochemical and biophysical properties of clock proteins and their interactions, but also the three-dimensional structure of clockwork components. Posttranslational modifications (such as phosphorylation) and protein-protein interactions, have become a central focus of recent research, in particular the complex interactions mediated by the phosphorylation of clock proteins and the formation of multimeric protein complexes that regulate clock genes at transcriptional and translational levels. The three-dimensional structures for the cyanobacterial clock components are well understood, and progress is underway to comprehend the mechanistic details. However, structural recognition of the eukaryotic clock has just begun. This review serves as a primer as the clock communities move towards the exciting realm of structural biology

    A hybrid particle-grid scheme for computing hydroelastic behaviors caused by slamming

    Get PDF
    Capable and accurate predictions of some effects of strongly nonlinear interaction wave-ship associated with hydroelastic behaviors are very required for simulation tool in naval architect and ocean engineering. It can guarantee ship safety at the sea state by producing proper design. Therefore, we have developed a hybrid scheme based on both grid and particle method. In order to clarify hydroelastic behaviors of a ship, a dropping test of a ship with elastic motion has been performed firstly. The developed scheme has been then validated on ship dropping case under the same conditions with experiment. The comparisons showed consistently in good agreement. Furthermore, evaluation on hydroelastic behaviors of ship motion under slamming, the impact pressure tends to increase in increasing Froude number (Fn). The bending moment and torque defined at the centre gravity due to hogging and sagging events can be predicted well, and their effects on the ship increase in increasing wave length even though the impact pressure decreases in increasing wave length after wave length is equal to 1.0. Moreover, hydroelastic behaviors affect the large heave and pitch amplitudes. Finally, the developed scheme can predict simultaneously hydrodynamic and hydroelastic effects on a ship caused by strongly nonlinear interaction between wave and ship

    Numerical simulation on hydroelastic response of structure under impact load from water using eulerian scheme with lagrangian particles

    Get PDF
    Hydroelasticity caused by water impact is of concern in many applications of ocean engineering/naval architect and a complicated physical phenomenon. We have developed a coupled Eulerian scheme with Lagrangian particles to combine advantages and to compensate disadvantages in both grid based method and particle based method. In this study, the developed numerical model was applied to hydroelastic problems due to impact pressure such as water entry of an elastic cylinder and elastic tanker motion in wave. We showed the numerical results which is overall agreement with experimental results

    The effects of smoothing length on the onset of wave breaking in Smoothed Particle Hydrodynamics (SPH) simulations of highly directionally spread waves

    No full text
    Ocean wave breaking is a difficult-to-model oceanographic process, which has implications for extreme wave statistics, the dissipation of wave energy, and air-sea interaction. Numerical methods capable of reliably simulating real-world directionally spread breaking waves are useful for investigating the physics of wave breaking and for the design of offshore structures and floating bodies. Smoothed Particle Hydrodynamics (SPH) is capable of modelling highly steep and overturning free surfaces, which makes it a promising method for simulating breaking waves. This paper investigates the effect of smoothing length on simulated wave breaking in both following and crossing seas. To do so, we reproduce numerically the experiments of highly directionally spread breaking waves in McAllister et al. [J. Fluid Mech. vol. 860, 2019, pp. 767–786] using a range of normalised smoothing lengths: h/dp =1.4, 1.7, 2.0, 2.3, with h smoothing length and dp particle spacing. The smallest smoothing length we use appears to adversely affect the fidelity of the simulated surface elevation, so that the tallest wave crest observed in experiments is not fully reproduced (coefficient of determination r 2 ≈ 0.7). For smoothing lengths h/dp = 1.7, 2.0, and 2.3, the experiments are well reproduced (r 2 ≥ 0.88); in these simulations smoothing length predominantly affects the spatial extent and duration of breaking. Qualitative and quantitative comparison of our simulations show that values of h/dp in the range 1.7 − 2 best reproduce the wave breaking phenomena observed in experiments

    Highly directionally spread, overturning breaking waves modelled with Smoothed Particle Hydrodynamics: a case study involving the Draupner wave

    No full text
    Wave breaking in the ocean affects the height of extreme waves, energy dissipation, and interaction between the atmosphere and upper ocean. Numerical modelling is a critical step in understanding the physics of wave breaking and offers insight that is hard to gain from field data or experiments. High-fidelity numerical modelling of three-dimensional breaking waves is extremely challenging. Conventional grid-based numerical methods struggle to model the steep and double-valued free surfaces that occur during wave breaking. The Smoothed Particle Hydrodynamics (SPH) method does not fall prey to these issues. Herein, we examine the SPH method’s ability to model highly directionally spread overturning breaking waves by numerically reproducing the experiments presented in McAllister et al. (2019). We find that the SPH method reproduces the experimental observations well; when comparing experimental and numerical measurements we achieve coefficient of determination values of 0.92 — 0.95, with some smaller-scale features less well reproduced owing to finite resolution. We also examine aspects of the simulated wave’s geometry and kinematics and find that existing breaking criteria are difficult to apply in highly directionally spread conditions
    corecore