406 research outputs found

    A Hypothesis to Explain How the DNA of Elderly People Is Prone to Damage: Genome-Wide Hypomethylation Drives Genomic Instability in the Elderly by Reducing Youth-Associated Gnome-Stabilizing DNA Gaps

    Get PDF
    Epigenetic changes are how the DNA of elderly people is prone to damage. One role of DNA methylation is to prevent DNA damage. In the elderly and those with aging-associated noncommunicable diseases (NCDs), DNA shows reduced methylation; consequently, the aging genome is unstable and accumulates DNA damage. While the DNA damage response (DDR) of the direct intracellular machinery repairs DNA lesions, too much DDR halts cell proliferation, and promotes senescence. Therefore, genome-wide hypomethylation drives genomic instability, causing aging-associated disease phenotypes. However, the mechanism is unknown. Independent of DNA replication, the eukaryotic genome retains a certain amount of endogenous DNA double-strand breaks (EDSBs), called physiologic replication-independent EDSBs (Phy-RIND-EDSBs), that possess physiological function. Phy-RIND-EDSBs are reduced in aging yeast, and low levels of Phy-RIND-EDSBs decrease cell viability and increase DNA damage. Thus, Phy-RIND-EDSBs have a biological role as youth-associated genomic-stabilizing DNA gaps. In humans, Phy-RIND-EDSBs are located in the hypermethylated genome. Because the genomes of aging people are hypomethylated, the elderly should also have a low level of Phy-RIND-EDSBs. Based on this evidence, I hypothesize that in the human Phy-RIND-EDSBs, reduction is a molecular process that mediates the genome-wide hypomethylation driving genomic instability, which is a nidus pathogenesis mechanism of human body deterioration in aging-associated NCDs

    Investigation of PTEN promoter methylation in ameloblastoma

    Get PDF
    Phosphatase and tensin homolog (PTEN) acts as a tumor suppressor gene. Inactivation of PTEN has been reported in various types of cancers. PTEN promoter methylation possibly underlies PTEN inactivation, which results in tumorigenesis. The aim of this study was to investigate whether PTEN promoter methylation contributes to PTEN inactivation in ameloblastoma and its associated protein expression. In total, 20 fresh-frozen ameloblastoma samples were evaluated for PTEN promoter methylation using methylation-specific polymerase chain reaction (MS-PCR). A subset of 10 paraffin-embedded ameloblastoma samples was examined for PTEN expression through immunohistochemistry. Four primary cultured ameloblastoma cells were investigated for PTEN promoter methylation and PTEN transcriptional expression via reverse transcription PCR. PTEN promoter methylation was detected in 65% (13/20) of the ameloblastoma samples. Of 10 ameloblastoma samples, 4 exhibited reduced PTEN expression. Of 5 samples with methylated PTEN, 3 (60%) were associated with loss of PTEN expression. However, PTEN expression was detected in 4 (80%) of 5 samples with unmethylated PTEN. In addition, 3 (75%) of 4 primary ameloblastoma cell cultures exhibited an inverse correlation between PTEN promoter methylation and PTEN transcription level. PTEN promoter methylation is found in a number of ameloblastomas but not significantly correlated with loss of PTEN expression. Genetic or epigenetic mechanisms other than PTEN promoter methylation may contribute to PTEN inactivation in ameloblastoma tumor cells

    Pathologic Replication-Independent Endogenous DNA Double-Strand Breaks Repair Defect in Chronological Aging Yeast

    Get PDF
    Reduction of physiologic replication-independent endogenous DNA double strand breaks (Phy-RIND-EDSBs) in chronological aging yeast increases pathologic RIND-EDSBs (Path-RIND-EDSBs). Path-RIND-EDSBs can occur spontaneously in non-dividing cells without any inductive agents, and they must be repaired immediately otherwise their accumulation can lead to senescence. If yeasts have DSB repair defect, retention of Path-RIND-EDSBs can be found. Previously, we found that Path-RIND-EDSBs are not only produced but also retained in chronological aging yeast. Here, we evaluated if chronological aging yeasts have a DSB repair defect. We found a significant accumulation of Path-RIND-EDSBs around the same level in aging cells and caffeine treated cells and at a much higher level in the DSB repair mutant cells. Especially in the mutant, some unknown sequence was found inserted at the breaks. In addition, % difference of cell viability between HO induced and non-induced cells was significantly greater in aging cells. Our results suggested that RIND-EDSBs repair efficiency declines, but is not absent, in chronological aging yeast which might promote senescence phenotype. When a repair protein is deficient, an alternative pathway might be employed or an end modification process might occur as inserted sequences at the breaks were observed. Restoring repair defects might slow down the deterioration of cells from chronological aging

    Replication independent DNA double-strand break retention may prevent genomic instability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Global hypomethylation and genomic instability are cardinal features of cancers. Recently, we established a method for the detection of DNA methylation levels at sites close to endogenous DNA double strand breaks (EDSBs), and found that those sites have a higher level of methylation than the rest of the genome. Interestingly, the most significant differences between EDSBs and genomes were observed when cells were cultured in the absence of serum. DNA methylation levels on each genomic location are different. Therefore, there are more replication-independent EDSBs (RIND-EDSBs) located in methylated genomic regions. Moreover, methylated and unmethylated RIND-EDSBs are differentially processed. Euchromatins respond rapidly to DSBs induced by irradiation with the phosphorylation of H2AX, γ-H2AX, and these initiate the DSB repair process. During G0, most DSBs are repaired by non-homologous end-joining repair (NHEJ), mediated by at least two distinct pathways; the Ku-mediated and the ataxia telangiectasia-mutated (ATM)-mediated. The ATM-mediated pathway is more precise. Here we explored how cells process methylated RIND-EDSBs and if RIND-EDSBs play a role in global hypomethylation-induced genomic instability.</p> <p>Results</p> <p>We observed a significant number of methylated RIND-EDSBs that are retained within deacetylated chromatin and free from an immediate cellular response to DSBs, the γ-H2AX. When cells were treated with tricostatin A (TSA) and the histones became hyperacetylated, the amount of γ-H2AX-bound DNA increased and the retained RIND-EDSBs were rapidly repaired. When NHEJ was simultaneously inhibited in TSA-treated cells, more EDSBs were detected. Without TSA, a sporadic increase in unmethylated RIND-EDSBs could be observed when Ku-mediated NHEJ was inhibited. Finally, a remarkable increase in RIND-EDSB methylation levels was observed when cells were depleted of ATM, but not of Ku86 and RAD51.</p> <p>Conclusions</p> <p>Methylated RIND-EDSBs are retained in non-acetylated heterochromatin because there is a prolonged time lag between RIND-EDSB production and repair. The rapid cellular responses to DSBs may be blocked by compact heterochromatin structure which then allows these breaks to be repaired by a more precise ATM-dependent pathway. In contrast, Ku-mediated NHEJ can repair euchromatin-associated EDSBs. Consequently, spontaneous mutations in hypomethylated genome are produced at faster rates because unmethylated EDSBs are unable to avoid the more error-prone NHEJ mechanisms.</p

    Polymeric immunoglobulin receptor polymorphisms and risk of nasopharyngeal cancer

    Get PDF
    BACKGROUND: Epstein-Barr virus (EBV) associated nasopharyngeal cancer (NPC) is an important squamous cell cancer endemic in Southeast Asia and the Far East and can be considered a multifactorial genetic disease. This research explores potential associations between nasopharyngeal epithelial EBV receptor and NPC susceptibility. To prove the hypothesis, we evaluated two candidate genes, complement receptor 2 (CR2) and polymeric immunoglobulin receptor (PIGR) by using 4 SNPs, CR2IVS2-848C→T, PIGRIVS3-156G→T, PIGR1093G→A and PIGR1739C→T, to genotype 175 cases and 317 controls, divided into Thai, Chinese and Thai-Chinese based on their respective ethnic origins. RESULTS: The results obtained indicated that PIGR is an NPC susceptibility gene. The risk association pertaining to each ethnic group was detected for homozygous PIGR1739C with a significant ethnic group adjusted OR (95%CI) of 2.71(1.72–4.23) and p < 0.00001. Haplotype of the two missense PIGR SNPs, 1093G→A and 1739C→T, and sequence analyses have confirmed the role of the nucleotide PIGR1739 and excluded possibility of an additional significant nonsynonymous NPC susceptibility SNP. CONCLUSIONS: We present genetic evidence leading to hypothesize a possibility of PIGR to function as the EBV nasopharyngeal epithelium receptor via IgA-EBV complex transcytosis failure. The PIGR1739C→T is a missense mutation changing alanine to valine near endoproteolytic cleavage site. This variant could alter the efficiency of PIGR to release IgA-EBV complex and consequently increase the susceptibility of populations in endemic areas to develop NPC

    Evaluation of lymphocyte apoptosis in patients with oral cancer

    Get PDF
    Objectives: To evaluate apoptotic levels of peripheral blood mononuclear cells (PBMCs) and apoptotic regulatory proteins (Bax and Bcl-2) in lymphocyte subsets of oral cancer (OC) patients and healthy controls (HC). Methodology: The percentage of apoptotic cells and lymphocyte counts were measured in the first cohort using PBMCs obtained from 23 OC patients and 6 HC. In the second cohort, (OC, 33; HC, 13), the mean fluorescence intensity (MFI) of Bax and Bcl-2 in CD19+ B, CD4+ T, CD8+ T, and CD16+56+ natural killer (NK) cells was determined via flow cytometry. Results: The percentage of apoptotic cells was higher in the PBMCs of OC patients than in HC patients, particularly in patients with stage IV cancer (p&lt;0.05). However, lymphocyte counts were significantly lower in stage IV patients (p&lt;0.05). NK CD19+ B and CD16+56+ cell counts were significantly lower in OC patients compared with HC patients (p&lt;0.001 and p&lt;0.01, respectively), but CD4+ T cells were interestingly significantly higher in OC patients (p&lt;0.001). While Bax MFI was slightly higher, Bcl-2 MFI was significantly lower for all four lymphocyte subsets in OC samples, particularly in stage IV patients, when compared with HC. Consequently, Bax/Bcl-2 ratios showed an upward trend from HC to OC patients, particularly those in stage IV. We found similar trends in Bax and Bcl-2 MFI for tumor stage, tumor size, and lymph node involvement. Conclusions: The increased lymphocyte apoptosis in stage IV OC patients may be related to higher Bax levels and lower Bcl-2 levels. The Bax/Bcl-2 ratio in lymphocytes may be useful to determine the prognosis of OC patients, and could be considered a mean for supportive treatment in the future

    Molecular definition of the Prader — Willi syndrome chromosome region and orientation of the SNRPN gene

    Get PDF
    The Prader—Willi syndrome and the Angelman syndrome are caused by the loss of function of distinct but closely linked genes on human chromosome 15. Based on a yeast artificial chromosome restriction map and two key patients we have determined that the shortest region of deletion overlap in the Prader—Willi syndrome comprises 320 kb. The region Includes the anonymous DNA marker PW71 (D15S63) and the gene for the small nuclear ribonucleoprotein N (SNRPN). The SNRPN gene maps 130 kb distal to PW71 and is transcribed from centromere to telomer

    LINE-1 methylation status of endogenous DNA double-strand breaks

    Get PDF
    DNA methylation and the repair of DNA double-strand breaks (DSBs) are important processes for maintaining genomic integrity. Although DSBs can be produced by numerous agents, they also occur spontaneously as endogenous DSBs (EDSBs). In this study, we evaluated the methylation status of EDSBs to determine if there is a connection between DNA methylation and EDSBs. We utilized interspersed repetitive sequence polymerase chain reaction (PCR), ligation-mediated PCR and combined bisulfite restriction analysis to examine the extent of EDSBs and methylation at long interspersed nuclear element-1 (LINE-1) sequences nearby EDSBs. We tested normal white blood cells and several cell lines derived from epithelial cancers and leukemias. Significant levels of EDSBs were detectable in all cell types. EDSBs were also found in both replicating and non-replicating cells. We found that EDSBs contain higher levels of methylation than the cellular genome. This hypermethylation is replication independent and the methylation was present in the genome at the location prior to the DNA DSB. The differences in methylation levels between EDSBs and the rest of the genome suggests that EDSBs are differentially processed, by production, end-modification, or repair, depending on the DNA methylation status
    corecore