69 research outputs found

    ARTIFICIAL INTELLIGENCE BASED HYPER-REALISTIC DEEP FAKES FOR PARTICIPANT VIDEO IN COLLABORATION MEETINGS

    Get PDF
    Techniques are described for Artificial Intelligence (AI) based deep fakes for a participant view in the meeting. A deep fake video may be built from poor quality and noisy/low-light video. A participant can eliminate others in the video that the participant did not intend to see but are in the camera field of view. Quality of video from poor quality cameras can also be eliminated. Moreover, a deep fake algorithm is described to build a high quality hyper realistic video from a low quality/no video scenario from the audio. This can be achieved by capturing only the face metadata on the meeting client using previously learned AI models and sending it to the cloud. The meeting server uses the AI based deep fake to create a high-resolution video from a low-resolution video using AI algorithms previously learned from previously shared videos/metadata from the user. The apparent location of the participant may also be changed using deep fakes (e.g., bedroom to work room, car to office room, etc.), in order to provide an optimal meeting experience for the remote participant

    Occurrence of aflatoxin contamination in maize kernels and molecular characterization of the producing organism, Aspergillus

    Get PDF
    Aflatoxins are toxic metabolites produced mainly by Aspergillus flavus and Aspergillus parasiticus. Aflatoxin B1 (AFB1) is a potent carcinogen, teratogen and mutagen. 660 pre- and post- harvest maize samples were collected from major maize growing areas in Tamil Nadu, India. Aflatoxin contamination was observed in 40.22% of the samples tested of which, 22.97% of pre-harvest and 53.93% post-harvest maize samples were found to be infected with AFB1 and 12.05% of the total samples exceeded WHO permissible limit of 20 μg/kg. AFB1 contamination ranged from 0 to 149.32 μg/kg. 28 A. flavus isolates were isolated and grouped into three sets based on aflatoxin producing potential viz., highly aflatoxin producing isolates, medium producing isolates and no aflatoxin producer or traces of aflatoxin producing isolates. The genetic coefficient matrix analysis using random amplified polymorphic DNA (RAPD) with ten random primers revealed minimum and maximum percent similarities among the tested A. flavus strains ranging from 35 to 89%. Cluster analysis separated the three sets of isolates into two groups (groups I and II) with each two subgroup confirming the genetic diversity among the A. flavus isolates from maize.Keywords: Maize, survey, Aspergillus flavus, aflatoxin, random amplified polymorphic DNA (RAPD).African Journal of Biotechnology Vol. 12(40), pp. 5839-584

    Fenton-like degradation of Bisphenol A catalyzed by mesoporous Cu/TUD-1

    Get PDF
    A family of copper oxide catalysts with loadings spanning 1–5 wt% were dispersed on a three dimensional, mesoporous TUD-1 silica through a hydrothermal, surfactant-free route employing tetraethylene glycol as a structure-directing agent. Their bulk and surface properties were characterized by N2 physisorption, XRD, DRUVS, EPR, TEM and Raman spectroscopy, confirming the expected mesoporous wormhole/foam support morphology and presence of well-dispersed CuO nanoparticles (∼5–20 nm). The catalytic performance of Cu/TUD-1 was evaluated as heterogeneous Fenton-like catalysts for Bisphenol A (BPA) oxidative degradation in the presence of H2O2 as a function of [H2O2], and CuO loading. Up to 90.4% of 100 ppm BPA removal was achieved over 2.5 wt% Cu/TUD-1 within 180 min, with negligible Cu leaching into the treated water

    Analysis and design of a novel hybrid topology for power quality improvement using multilevel inverter fed induction motor by reducing vibration for textile wastewater treatment applications

    Get PDF
    The proposed research involves the design and implementation of a novel hybrid topology for power quality improvement using multilevel inverter fed induction motor by reducing vibration for Textile applications. Various modern applications have started to require higher power gadgets as of late. Staggered inverter is equipped for giving wanted substituting voltage level at output utilizing different low-level DC voltage as an input. In H-connect staggered inverter, the quantity of output level is characterized by the quantity of exchanged capacitor cells. A small amount of voltage can be utilized to produce a supported output voltage by exchanging the capacitor in parallel and in series. Staggered inverter produces less Total Harmonic Distortion (THD), less electromagnetic interference and less voltage inrush on switches. The proposed topology delivers a staircase waveform with higher number of output level utilizing less segments contrasted with a few existing exchanged capacitor multilevel inverter. The task manages cascaded H-connect staggered inverter that can be utilized for both single and three stage change. The structure is created with H-bridge inverter including DC-DC converter. A sine pulse width twist is decided on PWM pulses. The inverter essentially takes care of the issue of capacitor voltage adjusting as every capacitor is charged to the esteem equivalent to one of the information voltages at each cycle. Recreation is finished with the assistance of MATLAB Simulink programming and the exploratory outcomes for current and voltage at various THD esteems are appeared and the equivalent is done for equipment. The prototype structure is conceded and analysed for various parameters of proposed method, which results in reduced switches and proves more efficient than other conventional methods and in addition it is more proficient for pumping process in textile industry for wastewater treatment

    Epitope-Based Immunoinformatics and Molecular Docking Studies of Nucleocapsid Protein and Ovarian Tumor Domain of Crimean–Congo Hemorrhagic Fever Virus

    Get PDF
    Crimean–Congo hemorrhagic fever virus (CCHFV), the fatal human pathogen is transmitted to humans by tick bite, or exposure to infected blood or tissues of infected livestock. The CCHFV genome consists of three RNA segments namely, S, M, and L. The unusual large viral L protein has an ovarian tumor (OTU) protease domain located in the N terminus. It is likely that the protein may be autoproteolytically cleaved to generate the active virus L polymerase with additional functions. Identification of the epitope regions of the virus is important for the diagnosis, phylogeny studies, and drug discovery. Early diagnosis and treatment of CCHF infection is critical to the survival of patients and the control of the disease. In this study, we undertook different in silico approaches using molecular docking and immunoinformatics tools to predict epitopes which can be helpful for vaccine designing. Small molecule ligands against OTU domain and protein–protein interaction between a viral and a host protein have been studied using docking tools

    Global text mining and development of pharmacogenomic knowledge resource for precision medicine

    Get PDF
    Understanding patients' genomic variations and their effect in protecting or predisposing them to drug response phenotypes is important for providing personalized healthcare. Several studies have manually curated such genotype-phenotype relationships into organized databases from clinical trial data or published literature. However, there are no text mining tools available to extract high-accuracy information from such existing knowledge. In this work, we used a semiautomated text mining approach to retrieve a complete pharmacogenomic (PGx) resource integrating disease-drug-gene-polymorphism relationships to derive a global perspective for ease in therapeutic approaches. We used an R package, pubmed.mineR, to automatically retrieve PGx-related literature. We identified 1,753 disease types, and 666 drugs, associated with 4,132 genes and 33,942 polymorphisms collated from 180,088 publications. With further manual curation, we obtained a total of 2,304 PGx relationships. We evaluated our approach by performance (precision = 0.806) with benchmark datasets like Pharmacogenomic Knowledgebase (PharmGKB) (0.904), Online Mendelian Inheritance in Man (OMIM) (0.600), and The Comparative Toxicogenomics Database (CTD) (0.729). We validated our study by comparing our results with 362 commercially used the US- Food and drug administration (FDA)-approved drug labeling biomarkers. Of the 2,304 PGx relationships identified, 127 belonged to the FDA list of 362 approved pharmacogenomic markers, indicating that our semiautomated text mining approach may reveal significant PGx information with markers for drug response prediction. In addition, it is a scalable and state-of-art approach in curation for PGx clinical utility

    Computational Study on the Inhibitory Effect of Natural Compounds against the SARS-CoV-2 Proteins

    Get PDF
    COVID-19 is more virulent and challenging to human life. In India, the Ministry of AYUSH recommended some strategies through Siddha, homeopathy, and other methods to effectively manage COVID-19 (Guidelines for AYUSH Clinical Studies in COVID-19, 2020). Kabasura Kudineer and homeopathy medicines are in use for the prevention and treatment of COVID-19 infection; however, the mechanism of action is less explored. This study aims to understand the antagonist activity of natural compounds found in Kabasura Kudineer and homeopathy medicines against the SARS-CoV-2 using computational methods. Potential compounds were screened against NSP-12, NSP-13, NSP-14, NSP-15, main protease, and spike proteins. Structure-based virtual screening results shows that, out of 14,682 Kabasura Kudineer compounds, the 250395, 129677029, 44259583, 44259584, and 88583189 compounds and, out of 3,112 homeopathy compounds, the 3802778, 320361, 5315832, 14590080, and 74029795 compounds have good scoring function against the SARS-CoV-2 structural and nonstructural proteins. As a result of docking, homeopathy compounds have a docking score ranging from −5.636 to 13.631 kcal/mol, while Kabasura Kudineer compounds have a docking score varying from −8.290 to −13.759 kcal/mol. It has been found that the selected compounds bind well to the active site of SARS-CoV-2 proteins and form hydrogen bonds. The molecular dynamics simulation study shows that the selected compounds have maintained stable conformation in the simulation period and interact with the target. This study supports the antagonist activity of natural compounds from Kabasura Kudineer and homeopathy against SARS-CoV-2’s structural and nonstructural proteins.</p

    Expressing OsiSAP8, a Zinc-Finger Associated Protein Gene, Mitigates Stress Dynamics in Existing Elite Rice Varieties of the 'Green Revolution'

    Get PDF
    Key message: Overexpression of OsiSAP8 driven by Port Ubi2.3 from Porteresia coarctata imparts drought and salinity stress tolerance in transgenic rice. Stress associated proteins (SAPs) possess the zinc-finger domains that are wildly evolving functional and conserved regions/factors in plants to combat abiotic stresses. In this study, the promoter region of OsiSAP8, an intron-less, multiple stress inducible gene, was compared in silico with a strong constitutive promoter, Port Ubi2.3. This resulted in developing rice, resistant to drought and salinity expressing OsiSAP8 promoted by Port Ubi2.3. (Porteresia coarctata), through Agrobacterium-mediated transformation in the popular rice varieties, IR36 and IR64. Southern blot hybridization confirmed the integration of OsiSAP8, and the T0 transgenic lines of IR36 and IR64 were evaluated for their drought and salinity tolerance. The IR36-T1 progenies showed an enhanced tolerance to water withhold stress compared to wild type and IR64-T1 progenies. Physiological parameters, such as the panicle weight, number of panicles, leaf wilting, and TBARS assay, showed the transgenic IR36 to be superior. The transgenic lines performed better with higher 80-95% relative leaf water content when subjected to drought for 14 days. Gene expression analysis of OsiSAP8 in IR36 T1 showed a 1.5-fold upregulation under mannitol stress. However, IR64 T1 showed a two-fold upregulation in NaCl stress. An enhanced drought and salinity stress tolerance in the transgenic IR36 cultivar through overexpression of OsiSAP8 was observed as it had a native copy of OsiSAP8. This is perhaps the first study using a novel ubiquitin promoter (Port Ubi2.3) to generate drought and salinity stress-tolerant transgenic rice. Thus, we report the overexpression of a rice gene (OsiSAP8) by a rice promoter (Port Ubi2.3) in rice (IR36) to resist drought and salinity
    corecore