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Understanding patients’ genomic variations and their effect in protecting or predisposing 
them to drug response phenotypes is important for providing personalized healthcare. 
Several studies have manually curated such genotype–phenotype relationships into 
organized databases from clinical trial data or published literature. However, there are 
no text mining tools available to extract high-accuracy information from such existing 
knowledge. In this work, we used a semiautomated text mining approach to retrieve 
a complete pharmacogenomic (PGx) resource integrating disease–drug–gene-
polymorphism relationships to derive a global perspective for ease in therapeutic 
approaches. We used an R package, pubmed.mineR, to automatically retrieve PGx-
related literature. We identified 1,753 disease types, and 666 drugs, associated with 
4,132 genes and 33,942 polymorphisms collated from 180,088 publications. With 
further manual curation, we obtained a total of 2,304 PGx relationships. We evaluated 
our approach by performance (precision = 0.806) with benchmark datasets like 
Pharmacogenomic Knowledgebase (PharmGKB) (0.904), Online Mendelian Inheritance 
in Man (OMIM) (0.600), and The Comparative Toxicogenomics Database (CTD) 
(0.729). We validated our study by comparing our results with 362 commercially used 
the US- Food and drug administration (FDA)-approved drug labeling biomarkers. Of 
the 2,304 PGx relationships identified, 127 belonged to the FDA list of 362 approved 
pharmacogenomic markers, indicating that our semiautomated text mining approach 
may reveal significant PGx information with markers for drug response prediction. In 
addition, it is a scalable and state-of-art approach in curation for PGx clinical utility.

Keywords: text mining, precision medicine, disease–drug–gene–mutation relationship, pharmacogenomic 
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INTRODUCTION

With advancements in high-throughput genomic technologies 
since the past decade, the focus of pharmacogenomic (PGx) 
research has moved from candidate gene studies to large-
scale clinical PGx. Identifying important drug response genes 
is critical in PGx. A given drug may have pharmacogenes—
genes important for its pharmacology—that are involved in its 
pharmacokinetics fate or pharmacodynamics action (Walker, 
2004). However, to clearly elucidate the role of these genes for 
any particular drug takes years of research, and abundant articles 
are published in various perspectives. This delay impedes our 
ability to identify, evaluate, and use genetics to optimize drug 
selection and dosing with minimal toxicity (Ventola, 2013).

Generally, we explore the answers to such questions in 
publications describing the disease–drug–gene relationships 
of interest in a particular population. Such relationships 
of clinical importance for drug dosing and administration 
must be interpreted as a priority. Analyzing such related data 
from the literature, we need to rapidly identify and develop 
high-throughput, accurate, and population-specific genetic 
polymorphisms that correlate with drug response. Such genetic 
considerations can be expected to be important in diagnosis, 
treatment, and prevention. Both clinical and research communities 
have placed emphasis on identifying PGx relationships. Several 
databases employ manual curation of biomedical literature to 
provide comprehensive coverage of such disease or drug-related 
genetic association relationships in humans. Some of them are 
Online Mendelian Inheritance in Man (OMIM) (Amberger et al., 
2009), Human Gene Mutation Database (HGMD) (Stenson et al., 
2009), the Comparative Toxicogenomics Database (CTD) (Davis 
et al., 2016), Genetics Home Reference (GHR) (http://ghr.nlm.
nih.gov/) (National Library of Medicine (US), Genetics Home 
Reference 2013), and the Pharmacogenomics Knowledgebase 
(PharmGKB) (Whirl-Carrillo et al., 2012). Despite such focused 
approach to capture valuable PGx information in biomedical 
databases, much of this information still remains inaccessible in 
the unstructured text of biomedical publications.

A fully automated PGx relationship curation system to 
retrieve clinically relevant information is still far-fetched (Singhal 
et al., 2016). Therefore, advanced computational approaches 
with statistical evaluation can reduce manual efforts to curate 
important PGx relationships from available literature. The various 
sources of experimental noise reported in different articles 
result in a number of important genes or polymorphisms being 
overlooked in the biomedical text. Therefore, the recent efforts 
in (semi-)automated approaches facilitate automated extraction 
with manual curation of relationships for high quality are critical 
(Garten et al., 2010). Hence, in this paper, we propose an end-
to-end semiautomated approach for the extraction of disease–
drug–gene–polymorphism relationships in different global 
populations from biomedical literature. If an article mentions a 
drug and a genetic association, these articles are screened for their 
relevance in PGx in context to any drug response. The biological 
entities (e.g., disease, drug, gene, genetic variant) obtained by 
automated extraction were normalized with standard available 
datasets to exclude the ambiguities in publications. Furthermore, 

for performance evaluation, we compared our proposed pipeline 
with databases like OMIM (Amberger et al., 2009), CTD (Davis 
et al., 2016), and PharmGKB (Whirl-Carrillo et al., 2012) to 
assess the sensitivity and specificity of the disease-drug–gene–
polymorphism relationships. We also calculated the accuracy 
of each relationship obtained and compared their occurrence 
within the three datasets. We conducted a validation study by 
comparing our result with commercially used FDA-approved 
drug labeling biomarkers (https://www.fda.gov/drugs/science-
research-drugs/table-pharmacogenomic-biomarkers-drug-
labeling) (FDA, 2018). The final result of this approach is the 
disease–drugs–gene–variant mined from the literature published 
to date. The final PGx relations extracted were also prioritized 
for significance in clinical application. The key feature of the 
study is the use of text mining to tabulate the most important 
PGx information related to disease or given drugs by studying 
its variability and impact on individuals, which can be used for 
future clinical administration.

METHODS

Dataset Used
The schematic representation of the overall study architecture is 
shown in Figure 1 and can be summarized in the following steps: 
step 1, build a corpus of PGx and related abstracts fetched from 
PubMed using the Medical Subject Headings (MeSH) query; 
step 2, identify all biological entities in these PubMed abstracts 
(diseases, genes, drugs, polymorphisms, and populations); 
step 3, normalization of the obtained entities; step 4, validation 
with available dataset(s) in global context; and step 5, evaluation 
of extracted data and ranking of PGx relationships. This process 
results in a list of all PMIDs aligned PGx relationships of the 
form < disease–drug–gene–polymorphism>.

The details of each step are described in the following 
paragraphs. We used the in-house built R package, pubmed.
mineR (Rani et al., 2015), to extract the PGx relationships from 
the corpus. This package mines a given literature corpus without 
dependency on other packages for information extraction. Many 
such online text-mining algorithms are available like GoPubMed 
(Doms and Schroeder, 2005) and PolySearch2 (Liu et al., 2015). 
These available algorithms perform direct extraction of sentences 
from PubMed abstracts and highlight genes, disease, and species 
for easy reading through texts. These algorithms have limitations 
as are rigid in extracting predesigned concept lines and are not 
available in open source. Keeping in mind the limitations of 
the existing systems, and combining their advantages, pubmed.
mineR offers user flexibility to expand the user capabilities for 
executing multifaceted approaches. For example, on retrieving all 
the genes studied with warfarin drug response association from 
the literature, Polysearch2 could retrieve only six MEDLINE 
citations with CYP p450 gene, and PubTator retrieved ~20,000 
articles. However, warfarin had ~500 publications in PharmGKB 
with different genes associated. It facilitates the extraction of 
terms and their contexts, gene recognition, association between 
terms and between genes, including cross-associations, and 
hunting for key evidences for proof of associations.
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Step 1: Information retrieval. The dataset used in this pipeline 
includes PubMed articles only. Our PubMed query was formed 
using MEDLINE’s MeSH and included terms “inter-individual 
variability,” “pharmacogenomics,” “pharmacogenetics,” and “drug 
response.” We downloaded all PubMed citations that were human 
studies with an abstract available. The citations were downloaded 
in CSV format using the “e-utilities” interface provided by NCBI. 
The corpus of articles for this literature mining, containing 
pharmacogenetics and related articles, was thus created using the 
R package, pubmed.mineR.

Step 2: Entity recognition. For each PMID, the annotation 
results of all the biomedical entities mentioned in the abstract, i.e., 
disease, drugs, gene, and mutation, were obtained using PubTator 
(Wei et al., 2013). In PubTator, the four biological entities—
disease, chemical, gene, and related mutation annotations—were 
extracted by DNorm (Leaman et al., 2013), dictionary-based 
lookup approach, GNormPlus (Wei et al., 2015), and tmVar 
(Wei et al., 2013), respectively. The population of each study was 
extracted independently using a dictionary-based content search 
by the pubmed.mineR package. Since we focused on extracting 
PGx association, we retained only those abstracts that had at 
least one drug mention, with one gene mention, or any genetic 
variant mentioned.

Step 3: Normalization. The annotated articles were then passed 
through several filters, with each entity normalized to reduce 
false positives and ambiguity. Gene mentioning normalization 
was initially assessed based on the lexica provided with PubTator 
dataset, i.e., GNormPlus. The annotated genes retrieved from our 
PGx corpus were further matched with orthographical variations 
used by the authors to generate a standard expression that is 

identical to HGNC gene names (Yates et al., 2017). The gene 
entities that did not match the HGNC lexicon were preprocessed 
to find enumeration of potential names and rematched. All 
the unmatched entities were ruled out, based on abbreviated 
names, unconventional names, unspecified names, and other 
disambiguation. The baseline system implemented for disease 
normalization used dictionary lookup method using parent 
disease terms from International Classification of Diseases 
(ICD-10): version 2016 (Organisation, 2004). All the arbitrary 
terms referring to a symptom or any consequence of a disease/
syndrome which is not a disease in itself (has not been classified 
as a disease by ICD) were excluded, as they resulted in a high 
error percentage. Initially, the dictionary lookup method was 
configured to identify exact matches. However, in case of no 
exact match, a partial match with the parent disease concept was 
accepted. Drugs were matched with DrugBank IDs for unique 
drugs (Wishart et al., 2008). In case any other names of the drug 
(e.g., its chemical name, brand name, etc.) or the drug metabolite, 
chemical names associated with any gene/polymorphism were 
identified, the entities failed to normalize and were consequently 
excluded. Finally, the genetic polymorphisms related to the 
selected genes were retrieved in the final subcorpus and were 
matched according to their annotation in dbSNP IDs, human 
(ftp site:ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606/
genotype_by_gene/).

Step 4: Validation. Validation was carried out independently 
in two subtasks: 1) all the biological entities obtained were 
validated for their presence in any of the three benchmark 
datasets, and 2) the PGx relationships obtained were cross-
validated with the gold standard, PharmGKB. The benchmark 

FIGURE 1 | Overview of the proposed approach. The process of retrieving evidence-based sentences from PubMed abstracts using pubmed.mineR includes: 
(A) information retrieval, (B) entity recognition, (C) normalization, (D) validation, and (E) data integration and ranking. The final list of relationships of disease–drug–
gene–polymorphism is tabulated population-wise.
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datasets used to analyze this proposed semiautomated approach 
output were OMIM, CTD, and the gold standard, PharmGKB. 
We used the ground truth labels of the PharmGKB database 
to validate the PGx relationships that were retrieved after 
mining the proposed approach, as OMIM focuses on disease–
gene variant association and not on the genetic relevance with 
regard to drug intervention. Similarly, CTD database manually 
curates chemical–gene, chemical–disease, and gene–disease 
relationships, but genetic variant was not annotated in this 
database. A detailed statistical evaluation was conducted to 
assess the biological entities extracted as an output from this 
pipeline individually, as well as in relations with any other entity. 
To evaluate this, we compared the performance of the system to 
that obtained from OMIM, CTD, and PharmGKB and measured 
the concordance of the data obtained. This is one of the methods 
that we implemented to evaluate our findings. However, this 
may not be the only exhaustive resource for this validation. 
A circumstantial error analysis was carried out in terms of 
specificity, sensitivity, accuracy, precision, recall, and F measure. 
We further validated the entities for their presence in the three 
benchmark datasets; however, the PGx relationship matched 
using PharmGKB was considered the gold standard. Output 
from our approach is the test data. The true positive (TP) data are 
those which are present both in gold standard and test data, and 
true negative (TN) are data absent in both gold standard and test 
dataset. False positive (FP) is absent in gold standard and present 
in test data, and false negative (FN) is the number of correct, 
incorrect, and missed associations extracted by the system in 
comparison with the gold standard, respectively.

Step 5: Ranking of the PGx relationships. We report the 
results in terms of specificity, sensitivity, accuracy, precision, 
recall, and F measure. Let TP, FP, and FN be the number of 
correct, incorrect, and missed associations extracted by the 
system in comparison with the gold standard, respectively. The 
four candidate lists of genes obtained from our study, OMIM, 
CTD, and PharmGKB were combined to develop a unique list 
of PGx relationships from each disease–drug–gene triplet. 
All relationships with a frequency greater than 10 (f > 10) that 
occurred only in our framework were appended directly to the 
end of the consolidated list. A consensus of f > 10 has been decided 
by the authors, with the convention that lower than 10 articles 
may have been published as random co-occurrences or without 
any unidirectional scientific evidence. Hence, the papers with 
<10 may not be of significance. By doing so, the genes extracted 
from these datasets were assumed to be more relevant than those 
extracted from our pipeline. This is based on our observation that 
these datasets are manually curated and annotated with validated 
results with low noise, hence minimal FP genes. The gene names 
that overlapped between our approach and that of these datasets 
were found to be of prime importance, and their ranks need to 
be aggregated. We simply raised their rank order for such genes 
based on the number of occurrence in these three datasets. 
Finally, on stringent curation, 2,304 PGx relationships were 
obtained and validated. These relationships were compared with 
commercially used FDA-approved drug labeling biomarkers. Of 
the 2,304 markers obtained and validated, 127 were common 
with FDA-approved pharmacogenomic markers. This marked 

the reliability of the outcome of our pipeline. In addition, the 
remaining PGx relationships suggest that although they are not 
included in PharmGKB, they are of prime clinically importance.

RESULTS

The result section is split into sections based on the different 
steps used in our approach to extract the PGx relationship as 
disease–drug–gene–mutation. The overall architecture of the 
system framework and the obtained results in each step are 
represented in Supplementary Figure 1. Later, we evaluated the 
biological entities by normalizing them against the benchmark 
datasets, and then estimating the overall performance 
(precision in terms of identifying correct information with 
respect to disease, drug, and gene association) of our approach 
when compared to the three datasets. Upon validating, by 
comparing with the commercially available FDA-approved 
biomarkers for drug labeling, we ultimately present a resource 
of significantly enriched PGx-specific relationships as disease–
drug–gene–polymorphism across populations to optimize 
therapeutic interventions.

Dataset Extraction
A search for the “Pharmacogenomic”-related MeSH descriptor 
retrieved 633,074 abstracts, of which 518,529 were selected 
based on original articles only. Nonhuman studies were further 
excluded (88,209). The remaining citations (430,320) were then 
screened for the entities mentioned in the abstract. Articles with 
empty disease, drug, and gene fields were excluded (183,625). 
Out of the remaining 246,695 articles, seeds with no drug entity 
were excluded (66,607), as our search was focused on obtaining 
PGx-specific seeds. The debarred entries were mostly disease–
gene association or in silico tool/database development methods. 
Of the 183,637 citations, 12 had positive drug association studies 
and were therefore included. Eventually, the entities in this 
penultimate corpus included 246,695 articles. Articles excluded 
at the final step were mostly nongenetic studies or cytogenetic 
studies or disease association related to confounding factors. 
Articles with a gene/genetic variant mentioned against a drug 
association were included to form the final PGx subcorpus 
retrieving 180,088 citations with PGx-specific association studies. 
Entities in these articles (tabulated in details in Supplementary 
Tables 1–4) were normalized with the respective standard 
datasets. These articles were then manually curated for their 
relation between disease-specific drugs administered, genes, 
genetic variants, drug phenotypes, and other semantic classes 
relevant to PGx.

System Performance
We conducted two experiments to assess intrinsic performances 
of our approach.

 1) To estimate the total and unique seeds of individual extraction 
components (entity recognition and normalization, relation 
extraction) (Supplementary Figure 2), all predictions were 
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ranked based on their occurrence in the abstract to get a 
balanced assortment of entities (Supplementary Table 6 and 
9). The breakdowns of TP, FP, and FN were also provided and 
were calculated as mentioned in Supplementary Table 5. 
The performance parameters during normalization indicated 
the poor dependability of the biological entities due to lack 
of nonstandard annotations in biomedical texts. A total of 
82% of the gene names could be mapped to an HGNC gene 
ID. The remaining 18.14% could not be assigned an ID due 
to unspecific gene mentions (Hakenberg et al., 2008). This is 
because authors use different names for a gene, spell names 
in many ways, or even introduce completely new names. 
Similar is the case with diseases and drugs when matched 
with ICD v10 (Dogan et al., 2014) and DrugBank (Wishart 
et al., 2008), respectively (Supplementary Table 2). Some 
of the common errors were due to unrecognized gene name 
variations. For example, P-glycoprotein (P-gp)’ in the abstract 
is with the most relevant synonym of “MDR1,” whereas its 
official name (symbol) is ATP-binding cassette subfamily 
B member 1 (ABCB1). Such variations were either lexical, 
structural, orthographic, or morphologic. Most of the FNs 
were due to unknown syntactic variations; the recall can be 
further improved by future automated analysis of gene names/
symbols to identify variation patterns. More often, FP were 
strict in the sense that they were wrong recognitions, regions 
of text not referring to a gene. There was disambiguation due 
to wrong recognitions of gene mentions from abstracts, such 
as “IL-1 receptor” being recognized separate from IL2R or with 
the whole mention of “type II IL-1 receptor.” Other examples 
like the mention of “src inhibitors” refers to the molecules that 
inhibit the proto-oncogene tyrosine-protein kinase, src, and 
itself is not a gene. Supplementary Table 8 provides a detailed 
view of errors that cause FN or FPs, sorted by error type. 

 2) To estimate precision, recall, and accuracy of the extracted 
PGx relationships, the obtained data were compared to 
PharmGKB, OMIM, and CTD to estimate unique and total 
coverage of the output. The performance metrics of all the 
possible binary relations between the entities obtained 
from PubTator like disease–drug, disease–gene, drug–
gene, drug–SNP, and gene–SNP relations are also shown 
in Supplementary Tables 7 and 10). Our estimation of 
precision, recall, and F measure of the obtained 2,304 PGx 
relationships are tabulated in Table 1.

Through manual evaluation, we observed that most entities 
could be found in databases like 1000Genome population 
(Consortium, 2015). For drugs, and diseases, precision lies 
between 87 and 90%, respectively; here, we note that the system 
often marks diseases as adverse effects or any symptomatic 
form, so precision is low as the symptom would be common 
with other disease categories as well. Similarly, drugs have 
multiple applications in different disease types or are often used 
as an adjunct. F scores for all entities range from 84 to 92% for 
individual entity types (Supplementary Table 9). For relations, F 
score is between 65 and 84% (Supplementary Table 10).

Error Analysis
To better understand the system performance, we performed 
error analysis on the output of the test dataset. We calculated 
the precision, recall, and F measure, respectively, using the 
gold standard datasets. The percentage distribution of the error 
obtained in each step of the analytical pipeline is illustrated in 
Table 2. Error calculations were carried out in two steps: on each 
entity and the PGx relationships obtained from the pipeline. 
Both were compared to the gold standard dataset simultaneously. 
Error percentage is calculated by the absolute error upon exact 
value multiplied by 100 (formula as in equation 1). In our data, 
as shown in Table 2, the “observed value in data” is the entity 
output obtained from our pipeline, and “true value in data” is 
that extracted from the gold standard datasets. Since our pipeline 
screened a large PGx corpus of 188,088 articles, it may have 
entities more than that in gold standard dataset like PharmGKB. 
Such entities co-occurring in any PGx relationship have been 
presented as novel evidences, which, on validation in specific 
population cohorts, may be taken forward for clinical annotation 
and marker development.

Entity Detection Error
Error in entity obtained from the PubTator tool was also another 
significant source for precision error. Such errors occur due to 
an overlap of two different entities, spanning in the name of 
one of them. This error occurred when entities were present 
but are not detected by the tool. Consider the example of article 
“High serum sclerostin levels are associated with a better outcome 
in haemodialysis patients” (PMID: 26890570), GNormPlus 
incorrectly extracted “Sclerostin” as gene, whereas no gene has 

TABLE 1 | Performance comparison of pharmacogenomic (PGx) relationships obtained from our proposed pipeline with other benchmark datasets (OMIM, CTD, and 
PharmGKB).

Context type TP TN FP FN Sensitivity Specificity Efficacy Precision Recall F 
measure

Accuracy 

Our pipeline with “PharmGKB” 1,509 208 254 78 82.6 86.9 88.2 0.904 0.930 0.923 89.1
Our pipeline with “OMIM” 2,225 – 79 – 78.0 77.5 81.8 0.600 0.681 0.764 59.3
Our pipeline with “CTD” 1,776 153 375 – 70.7 65.5 72.2 0.729 0.803 0.801 79.7
Our pipeline with (“PharmGKB” 
AND “OMIM” AND “CTD”)

1,875 102 275 75 82.3 84.4 93.3 0.896 0.852 0.828 94.7

PharmGKB corpus compared to that of our pipeline and the articles extracted in these datasets. The formulae used for calculating the accuracy of the proposed pipeline 
compared to the other datasets (ref. Supplementary Table 5 for detailed analysis).
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been studied to be associated with any drug response phenotype. 
This led to the extraction of a false association between 
“sclerostin” with drugs, “Alfacalcidol” and/or “Warfarin.”

Entities Absent in Text
The absence of entities in the text can be primarily because 
of two reasons: either there are no entities in the abstract or 
no abstracts available in PubMed; or the PubTator could not 
retrieve the entities mentioned due to erroneous syntax. For 
PMID 28398598, the authors hypothesize clinical decision 
support tool for PGx prescribing. Although the abstract does not 
mention any drug–gene association, it monitors the prescription 
of most commonly prescribed medications according to the 
developed tool (Hakenberg et al., 2012). Certainly, it justifies 
the need for manual curation for entity recognition from such 
articles. Restricting our entity recognition and processing to only 
biomedical abstracts is a primary limitation of this study and 
major reason for this error.

Failure to Detect Entities
Failure to detect entities is also a source of errors. Consider the 
article (PMID: 28220983), the clinical significance of the CNV 
1q21·1 microdeletion or microduplication has been studied. 
However, the mutation extraction tool, tmVar, could not identify 
CNV as mutations.

Entity Normalization Error
Errors in entity normalization result in precision errors. The 
annotation obtained from our test dataset did not match with 
the gold standard annotation when the genes were matched 
with the  HGNC gene IDs (18.14%). Owing to unspecific gene 
mentions, it was difficult to assign a gene ID (for example, a 
name of a gene family, ‘‘major histocompatibility complex’’ 
belong to “human leukocyte antigen”) to nonhuman genes like 
murine or rat genes, which contributed to FP in gene mentions, 
and for diseases, when normalized with ICD parent disease class 
(28.97%) and drugs with the DrugBank IDs (31.99%). In the case 
of genes, the error arises due to inclusion of nongenic regions like 
pseudogenes, miRNA, intergenic regions, and upstream elements. 
For diseases, if there are multiple names, occurrence with other 
names might be missed when searching for a specific disease. In 

addition, most of these mentioned in the test dataset comprised 
of the parent disease category in WHO ICD v·10 (2016); however, 
diseases like “aneurysm,” “stroke,” and “embolism” appears under 
both “diseases of nervous system” as well as “diseases of the 
circulatory system.” Such discrepancies resulted in normalization 
error. When drugs obtained from the test data were normalized 
to the DrugBank IDs, the large amount of the error occurred as 
the active drug compound had synonymous chemical name or 
common name and different metabolites with synonyms. This 
resulted in a high normalization error percentage (31.99%) in 
the case of drugs.

The Absence of Annotated Pgx Relationships in 
Benchmark Datasets
Comparing the predicted PGx associations from 180,088 
PMIDs with PharmGKB, OMIM, and CTD, we estimated a 
coverage provided by our method. We found nearly 2,304 
associations extracted by the system, of which 287 were not 
captured by PharmGKB. The system extracted the tertiary 
relation < neonatal hemolytic anemia–acetaminophen–GSS 
variants> from article 27581854. However, in PharmGKB, the 
clinical annotation entry related to acetaminophen contains 
only drug-toxicity-related binary relation excluding the disease 
neonatal hemolytic anemia. Such annotations are considered as 
additional important PGx relationships that can be considered 
for clinical utility with disease per se. The total and unique 
entities and relationships are described in Supplementary 
Tables 6 and 7, respectively. The additional PGx relationships 
has been tabulated with their detailed characterization and 
clinical significance in Supplementary Table 11. We found 
the highest coverage with drug–gene/variant annotations in 
PharmGKB (89.1%), and the lowest with OMIM (59.3%), 
which could be explained due to no drug association studies 
in OMIM. Comparing our system with CTD, we found that 
it could recover 79.7% of the drug–gene and disease–drug 
relations, but note that many of the drug–gene relations in CTD 
were also automatically extracted and not approved for PGx-
specific relevance. Comparing our system with a total of all the 
three datasets revealed the highest coverage (94.7%) (Table 1). 
Figure 2 presents the associated genes found by co-occurrence 
in 180,088 articles of the most widely studied drugs globally. 

TABLE 2 | Error analysis evaluation results on different types of error occurrence on the test dataset.

Sl. No. Sources of error  True value in data Observed value in data Error percentage

1. Entity detection error 633,074* 582,428 8.00%
2. Entity absent in text 633,074* 615,650 2.75%
3. Failure to detect entity 633,074* 609,413 3.73%
4. Entity normalisation error
a. Gene normalization error 42,607 50,336 18.14%
b. Disease normalization error 71,704 92,481 28.97%
c. Drug normalization error 11,033 14,563 31.99%

Error percentage =
Observed value-True value

True value
×100 1( )

PharmGKB has been considered as the gold standard dataset for all the comparisons. *in total PGx corpus extracted from MEDLINE. The error percentage has been calculated 
according to the formula 1.
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The top 10 genes plotted for each of these drugs have at least 
100 citations. Ultimately, Figure 3 shows these additional PGx 
relationships pertaining to global PGx literature that are of 
prime clinical importance. The left nodes represent the disease 
class, the middle nodes the drugs, and the nodes on the right 
corresponds to the markers annotated to the genes pertaining 
the PGx relationship. Each color of the edges represents a 
relationship (disease–drug and/or drug–gene) for distinct 
visualization. The width of the edges represents the number 
of evidence present on each of the relationship. For example, 
cancer-cisplatin-TPMT has the most evidence followed by skin 
cancer-fluorouracil-DPYD and so on.

A Resource for Pharmacogenomic 
Evaluation
We created a repository containing the 180,088 pharmacogenetically 
relevant articles identified by our scanning method with PGx-
specific seeds associated to those articles. The result also comprises 
of 2,304 disease–drug–gene with their frequency of co-occurrences 
detected in those articles (Supplementary Table 12). Thus, our 
knowledge resource provides an overview over genetic variations 
implicated in drug response. This can be queried by disease 
or drug or gene, and it summarizes gene–drug relationships, 
categories of evidence, and supporting literature. The PGx 
evidences, with regard to drugs, can help us to determine clinical 
decisions. They provide a quick overview of how gene/genetic 
variants affect the drug response in individual patients, in specific 
population. We, therefore, provided a thorough categorization to 
classify disease–drug–gene relationships according to the type of 
pharmacogenetic evidence obtained from the source corpus. This 
growing resource needs to be tapped for clinical benefits, for drugs 

of pharmacogenetics significance, and is a core component of 
pharmacogenetic screening.

DISCUSSION

The dynamic knowledge about the DNA sequences and their 
functional consequence has ventured several exploratory 
research like pharmacogenomics. Investigating the DNA 
sequence has actually outpaced the growth in computer power 
for the past several years, giving rise to the new era of big 
data analytics. Advancements such as creating algorithms to 
develop computational packages to dig deeper details of DNA 
like associating variations in genes with clinically relevant 
phenotypes—disease risk, therapeutic response, and adverse 
effects of drugs—are expected to arise in the near future (Hansen 
et al., 2009). Our study attempts to measure the capability of a 
text mining system in semiautomatically extracting database level 
annotations from PubMed abstracts. Therefore, we performed 
retrieval of articles through an automated tool followed by 
manual curation for its relevance in PGx. Our evaluation of the 
proposed system pipeline against gold standard annotations 
extracted from curated database provides insight of the clinical 
applicability of text mining for treatment management. In context 
of text mining, this is the first attempt to effectively combine 
information from multiple sentences to extract quaternary 
relations between disease, drugs, genes, and polymorphism data 
in the global pharmacogenomic context. Our approach to link 
association across sentences using entity identity words resulted 
in substantial performance improvement. A performance 
of 89.1% of overall accuracy was achieved when compared 
with PharmGKB, which was further enhanced to 94.7% after 

FIGURE 2 | Distribution of pharmacogenomic (PGx)-specific entities obtained from 2,304 PGx relationships with at least 100 citations. In the increasing order of the 
most prevalent medications prescribed from left to right and the most studied genes studied for PGx association with these drugs.
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detailed comparison with all the three curated databases. This 
demonstrates that our approach, to some extent, addressed the 
linguistic inference challenge pertaining to the use of text mining 
for database curation (Ravikumar et al., 2015).

First, even though our algorithm has improved precision when 
compared with PharmGKB and also ranking of PGx relationships 
of drug–gene pairs, the overall precision is still lower than the gold 
standard (Rubin et al., 2005). Starting from a PGx-specific seed, 
the algorithm implicitly classifies sentences into PGx-related or 

nonrelated. However, if “n” drugs and “m” genes co-occur in any 
PGx article, the algorithm will automatically extract all “n” and 
“m” possible drug–gene pairs. The extraction algorithm used 
was probabilistic and do not consider the syntactic relationships 
between drug entities and gene entities, independently in 
sentences. Our extraction pipeline cannot extract ready-made 
PGx relationships from the literature, but it can find sentences 
with PGx-relevant information excluding several nonspecific 
associations (Xu and Wang, 2013). Therefore, the emphasis on 

FIGURE 3 | PGx-specific enriched markers other than that mentioned in PharmGKB. Disease ontology (left), FDA-approved drug (middle), and pharmacogenes 
(right) known (i.e., statistical association in clinical-genetics studies) to alter drug response or efficacy or lead to adverse drug response (Supplementary Table 9).
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semiautomated approach has been established to construct the 
exact and complete knowledge resource of PGx-specific disease–
drug–gene associations from published literature.

Second, the results presented in the previous section show 
the effectiveness of the proposed approach by performance 
comparison when extracted using our semiautomated method, 
and OMIM, CTD, and PharmGKB were used to extract correct 
disease–drug–gene–mutations. Quite noticeably, a large number 
of relationships overlapped between different combinations of 
the entities (e.g., disease–drug, drug–gene, drug–variant, etc.) 
obtained from our system and that from the standard datasets 
(Table 7 of Supplementary data). We, therefore, propose to 
present an independent comprehensive resource to curate 
important disease-related PGx relationships. We also analyzed 
our drug–gene pair predictions for known errors and false 
negatives. Known errors are PGx relationships obtained from our 
approach but are unrelated or nonspecific to the disease; however, 
they are presently associated in any of the three datasets. These are 
detailed in Supplementary Tables 8–10. It can be primarily be 
due to the following: a) indirect or infrequent drug mention. Such 
cases could be avoided by increasing the weight of target drugs, 
administered in a particular disease type/category, frequency in 
comparison to other disease mentions. b) Unrelated documents: 
in few cases, the documents were not directly related to the target 
disease. This can be improved by more comprehensive extraction 
of documents related to the target disease. c) Disease name 
ambiguity: in some cases, the DNorm tool identifies a nondisease 
mention as a disease, and the feature set is disturbed due to close 
proximity of the mutation with false disease identification. These 
errors occur due to ambiguous abbreviations or nonstandard 
notations mentioned by authors that resemble biological  
entity names.

Third, the entire PGx relationship extraction algorithm starts 
with 1,753 disease types, 666 drugs, associated with 4,132 genes, 
and 33,942 polymorphisms collated from 180,088 publications 
filtered out from 6 million MEDLINE abstracts. During the 
extraction and ranking process, many non-PGx-specific 
MEDLINE sentences were automatically excluded. Ultimately, 
we can rank the 2,304 human PGx relationships (Supplementary 
Table 11) according to their PGx specificity and can further 
improve the precision of the relationship extraction algorithm. 
We validated the approach by comparing our results with 
commercially used FDA-approved drug labeling biomarkers. Of 
the 362 FDA-approved pharmacogenomic markers, 127 were 
common, with the 2,304 markers obtained from our proposed 
approach (Supplementary Table 11).

Translational medicine revolves around the discovery of 
basic biological sciences and uses this research into clinical 
setting. Therapeutic observation can be further used for 
clinical development, targeted therapy, or drug repurposing. 
It focuses on patient care, including the creation of new 
diagnostics, prognostics, prevention strategies, and therapies 
based on pharmacogenomic discoveries for precision medicine. 
The emergence of translational bioinformatics spans into 
the development of algorithms and computational tools to derive 
the actual basis of molecular and cellular data with an explicit 
goal of affecting clinical care. This promise of translational 

clinical medicine is progressing with the vision of genome-
guided medicine (Hauser et al., 2018).

LIMITATIONS AND FUTURE DIRECTION

The minimum requirement to adopt a PGx test is an association 
of PGx biomarker(s) and primary outcomes, replicable in a 
specific-population cohort mainly related to drug toxicity, 
or often, lack of efficacy. This should be accompanied by a 
clear recommendation for the drug/dose adjustment with the 
respective gene or its variant. Once such an association is available 
from systematic analysis of the relationship obtained from studies 
on phenotypic response and genetic variability in population-
specific individuals, a PGx test can be formulated for patient 
evaluation. In this study, our predominant concern was to extract 
the PGx-specific associations from wide biomedical literature. 
Trimming the unwanted publications from this huge database 
to a sizeable number of relevant pharmacogenetics articles was 
obligatory. This led to the need for use of a semiautomated 
data mining tool that could screen retrieved articles. With 
such automatic extraction and manual validation, there will 
likely be articles that are missed due to the varied complexities 
of biomedical literature. In addition, ~30% of the relationships 
were missed by the system due to the absence of relevant entities 
in the abstract. An extension to more advanced systems to 
overcome the additional experimental or statistical noise and 
retrieval of information from full text, tables, or supplementary 
files may result to a detailed output (Jimeno Yepes and Verspoor, 
2014). Erroneous output after entity normalization was a major 
concern. This was due to unmatched entities filtered out based 
on nonstandardized, unambiguous abbreviations or unspecified 
names appearing in the text, which did not correspond to the 
standard nomenclature system. The basis of this study is to cover 
the broader task for PGx relationship extraction from huge 
corpora. The result section is divided according to the different 
steps of our followed approach to extract the PGx relationship 
as disease–drug–gene–mutation. However, this does not 
specifically consider genetic polymorphism and their relation 
with any drug response outcome since annotating genetic variant 
representations from evidence was in multitude. There are other 
significant variations in gene expression or variations linked as 
haplotype blocks or at protein level, which also play significant 
roles. These complex compound effects of gene variants, like 
effect of alleles or genotypes or alternative isoforms involved, 
were beyond the ability of the package to segregate. Therefore, 
disease–drug–gene relationships were only taken forward as 
PGx relationships in this study. Future advances in the respective 
domains of used tools with advanced integrated systems for 
multifaceted retrieval with stringent statistical validation would 
enable increased performance of such approaches to reduce 
manual labor cost with higher precision and efficiency. Some of 
these advanced tools/databases are available online (Percha and 
Altman, 2018, Yu et al., 2019).

Another parameter to consider is the fact that clinical utility 
of a genome-guided intervention cannot only be judged solely 
based on statistical evaluation but also on the effectiveness 

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Comprehensive Global Pharmacogenomic Text MiningGuin et al.

10 August 2019 | Volume 10 | Article 839Frontiers in Pharmacology | www.frontiersin.org

of population-wise patient treatment individualization. Both 
of these elements are needed to assess the value of healthcare 
resources used. Third, in this study, we focused on mining the 
biomedical literature for supporting precision medicine, whereas 
other studies have shown value in using additional text sources 
such as electronic health records and clinical trial data, which 
are of higher value addition. Systematically integrating data and 
results from multiple textual sources might be worth exploring 
in future research for robustness of such a text mining pipeline.

In conclusion, we have shown our approach for text mining 
drug response association with genes/genetic variants from the 
global biomedical literature published in PGx. This approach can be 
exploited to generate PGx relationships published for medications 
administered among different types of diseases. Our approach can 
thus apply broadly to a variety of diseases and their respective drugs 
administered. On comparative analysis with currently used FDA-
approved PGx drug label biomarkers commercially available, a 68% 
overlap of our approach confirms the accuracy of our approach and 
demonstrates that these text-mined results are potentially useful 
for clinical value addition and widening the spectrum of clinical 
curation and improving therapeutic services.
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