63 research outputs found

    A Comparative Study on the Effectiveness of Trunk Stabilization Exercises on Stable and Unstable Surfaces on Balance and Gait among Sub Acute Stroke Patients

    Get PDF
    INTRODUCTION: A Cerebro Vascular Accident (CVA) or Stroke is a common nervous system disorder that occurs due to abnormal blood circulation in the brain. The individual who sustains a CVA may have temporary or permanent loss of function as a result of injury to the brain tissues OBJECTIVES: 1. To evaluate the effect of trunk stabilization exercises on stable surface on balance ability in patients with sub acute stroke. 2. To evaluate the effect of trunk stabilization exercises on unstable surface on balance ability in patients with sub acute stroke. 3. To compare the effect of trunk stabilization exercises on stable and unstable surfaces on balance ability of patients with sub acute stroke. 4. To evaluate the effect of trunk stabilization exercises on stable surface on gait in patients with sub acute stroke. 5. To evaluate the effect of trunk stabilization exercises on unstable surface on gait in patients with sub acute stroke. 6. To compare the effect of trunk stabilization exercises on stable and unstable surfaces on gait of patients with sub acute stroke. METHODOLOGY: Study setting: This study was conducted in Physiotherapy outpatient department RVS College of Physiotherapy, Sulur, Coimbatore. Selection of subjects: 20 Clinically diagnosed post sub acute stroke patients were selected for the study who fulfilled the inclusion and exclusion criteria and randomly divided into two equal groups. GROUPA: Trunk stabilization exercises on stable surface. GROUP B: Trunk stabilization exercises on unstable surface. Study Design: Pre-test and Post- test experimental study. Study Duration: The duration of treatment for each individual patient was six weeks, five days per week Inclusion Criteria: 1. Stroke patients with duration between 6-12 months. 2. Clinically diagnosed as middle cerebral artery stroke. 3. Both sexes were included in the study. 4. Age between 55-65 years. 5. Subjects who are independently able to sit and perform exercises on Swiss ball. 6. Subject with ability to understand therapist direction and communication. Exclusion criteria: 1. Disease affecting balance other than stroke neurological disorders such as cerebellar disease, Parkinson’s disease, vestibular lesions. 2. Postural hypertension. 3. Subject who depend on any orthotic devices. 4. Orthopedic problems such as fracture, arthritis, deformities and contractures. 5. Brain tumors. 6. Cognitive and perceptual disorders. 7. Traumatic brain injury. 8. Subject with musculo skeletal problems. 9. Subject with psychiatric illness. 10. Visual impairments and hearing deficit. RESULTS: 20 Sub acute stroke subjects were selected for the study. The subjects were randomly divided into two equal groups, Group A and Group B. For Group A trunk stabilization exercises on stable surface was given and for Group B trunk stabilization exercises on unstable surface was given. The patients were treated 45 minutes a day, 5 times for 6 weeks. Before starting the treatment, balance was assessed by Berg balance scale and gait was assessed by Dynamic gait index scale. The measurement was repeated at the end of the study. CONCLUSION: A comparative study was conducted to compare the effectiveness of trunk stabilization exercises on stable and unstable surfaces on balance and gait among sub acute stroke patients. 20 Sub acute stroke patients were included in this study and were randomly divided into two groups, group A and B, each group consist of 10 patients. Group A was treated with trunk stabilization exercises on stable surfaces and Group B was treated with trunk stabilization exercises on unstable surfaces. Balance was assessed before and after intervention by berg balance scale and gait was assessed before and after intervention by dynamic gait index scale. The present study statistically demonstrates that the both the techniques is effective in improving the balance and gait in subjects with sub acute stroke. When comparing the mean values it was found that there was mean significant improvement in patients treated with trunk stabilization exercises on unstable surface than stable surface exercises

    Combined effects of chemical reaction and temperature dependent heat source on MHD mixed convective flow of a couple-stress fluid in a vertical wavy porous space with travelling thermal waves

    Get PDF
    A mathematical model is developed to examine the effect of chemical reaction on MHD mixed convective heat and mass transfer flow of a couple-stress fluid in vertical porous space in the presence of temperature dependent heat source with travelling thermal waves. The dimensionless governing equations are assumed to be made up of two parts: a mean part corresponding to the fully developed mean flow, and a small perturbed part, using amplitude as a small parameter. The analytical solution of perturbed part have been carried out by using the long-wave approximation. The expressions for the zeroth-order and the first order solutions are obtained and the results of the heat and mass transfer characteristics are presented graphically for various values of parameters entering into the problem. It is noted that velocity of the fluid increases with the increase of the couple stress parameter and increasing the chemical reaction parameter leads suppress the velocity of the fluid. Cross velocity decreases with an increase of the phase angle. The increase of the chemical reaction parameter and Schmidt number lead to decrease the fluid concentration. The hydrodynamic case for a non-porous space in the absence of the temperature dependent heat source for Newtonian fluid can be captured as a limiting case of our analysis by taking, and α1→0, Da→∞, a→∞

    Investigations on structural, optical, and impedance spectroscopy studies of titanium dioxide nanoparticles

    Get PDF
    This article explains a novel synthesis for producing titanium dioxide (TiO2) nanoparticles by a sol-gel technique using titanium tetraisopropoxide as a titanium source. The synthesized nanoparticles were analyzed using many measurements like X-ray diffraction (XRD), HRTEM, absorption UV spectroscopy, FTIR, and ac impedance spectroscopy. X-ray peaks were used to calculate the crystallite size and lattice strain by Williamson–Hall method. Crystallite size calculated from x-ray diffraction using the Scherrer equation gives an approximate size and cannot be used for measurements. TiO2 nanoparticles are found to possess a tetragonal structure with a crystalline size around 12 nm. Particle size was confirmed by HRTEM images. The optical studies response for the nanoparticles showed the possible visible absorption peaks for TiO2 nanoparticles are 323 nm. Bandgap energy (Eg) of the TiO2 nanoparticle calculated from UV visible absorption spectra is discussed, and the bandgap is 3.14 eV. FTIR spectra showed vibration bands of the Ti-O network. AC Conductivity properties of TiO2 nanoparticles are studied in the frequency range 1 to 8 MHz at varying temperatures. The conductivity of the TiO2 nanoparticle is found to be constant in the low angular frequency region. Dielectric parameters were analyzed at different temperatures and frequencies.                     KEY WORDS: Conductivity, Dielectric, Nanoparticles, Titanium dioxide, Structural studies   Bull. Chem. Soc. Ethiop. 2021, 35(1), 151-160. DOI: https://dx.doi.org/10.4314/bcse.v35i1.1

    Protective Role of Shiitake Mushroom-Derived Exosome-Like Nanoparticles in D-Galactosamine and Lipopolysaccharide-Induced Acute Liver Injury in Mice

    Get PDF
    Fulminant hepatic failure (FHF) is a rare, life-threatening liver disease with a poor prognosis. Administration of D-galactosamine (GalN) and lipopolysaccharide (LPS) triggers acute liver injury in mice, simulating many clinical features of FHF in humans; therefore, this disease model is often used to investigate potential therapeutic interventions to treat FHF. Recently, suppression of the nucleotide-binding domain and leucine-rich repeat related (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome, was shown to alleviate the severity of GalN/LPS-induced liver damage in mice. Therefore, the goal of this study was to find dietary exosome-like nanoparticles (ELNs) with therapeutic potential in curbing FHF by suppressing the NLRP3 inflammasome. Seven commonly consumed mushrooms were used to extract ELNs. These mushrooms were found to contain ELNs composed of RNAs, proteins, and lipids. Among these mushroom-derived ELNs, only shiitake mushroom-derived ELNs (S-ELNs) substantially inhibited NLRP3 inflammasome activation by preventing inflammasome formation in primary macrophages. S-ELNs also suppressed the secretion of interleukin (IL)-6, as well as both protein and mRNA levels of the Il1b gene. Remarkably, pre-treatment with S-ELNs protected mice from GalN/LPS-induced acute liver injury. Therefore, S-ELNs, identified as potent new inhibitors of the NLRP3 inflammasome, represent a promising class of agents with the potential to combat FHF

    In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene Acrylic Oligomer

    Full text link
    [EN] The present study reports on the use of low-functionality epoxy-based styrene¿acrylic oligomer (ESAO) to compatibilize immiscible ternary blends made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), polylactide (PLA), and poly(butylene adipate-co-terephthalate) (PBAT). The addition during melt processing of low-functionality ESAO at two parts per hundred resin (phr) of biopolymer successfully changed the soften inclusion phase in the blend system to a thinner morphology, yielding biopolymer ternary blends with higher mechanical ductility and also improved oxygen barrier performance. The compatibilization achieved was ascribed to the in situ formation of a newly block terpolymer, i.e. PHBVb- PLA-b-PBAT, which was produced at the blend interface by the reaction of the multiple epoxy groups present in ESAO with the functional terminal groups of the biopolymers. This chemical reaction was mainly linear due to the inherently low functionality of ESAO and the more favorable reactivity of the epoxy groups with the carboxyl groups of the biopolymers, which avoided the formation of highly branched and/or cross-linked structures and thus facilitated the films processability. Therefore, the reactive blending of biopolymers at different mixing ratios with low-functionality ESAO represents a straightforward methodology to prepare sustainable plastics at industrial scale with different physical properties that can be of interest in, for instance, food packaging applications.This research was funded by the EU H2020 project YPACK (Reference number 773872) and by the Spanish Ministry of Science, Innovation, and Universities (MICIU) with project numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R. L. Quiles-Carrillo wants to thank the Spanish Ministry of Education, Culture, and Sports (MECD) for financial support through his FPU Grant Number FPU15/03812. Torres-Giner also acknowledges the MICIU for his Juan de la Cierva contract (IJCI-2016-29675).Quiles-Carrillo, L.; Montanes, N.; Lagaron, J.; Balart, R.; Torres-Giner, S. (2019). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene Acrylic Oligomer. Journal of Polymers and the Environment. 27(1):84-96. https://doi.org/10.1007/s10924-018-1324-2S8496271Babu RP, O’Connor K, Seeram R (2013) Prog Biomater 2:8Torres-Giner S, Torres A, Ferrándiz M, Fombuena V, Balart R (2017) J Food Saf 37:e12348Quiles-Carrillo L, Montanes N, Boronat T, Balart R, Torres-Giner S (2017) Polym Test 61:421Zakharova E, Alla A, Martínez A, De Ilarduya S, Muñoz-Guerra (2015) RSC Adv 5:46395Steinbüchel A, Valentin HE (1995) FEMS Microbiol Lett 128:219McChalicher CWJ, Srienc F (2007) J Biotechnol 132:296Reis KC, Pereira J, Smith AC, Carvalho CWP, Wellner N, Yakimets I (2008) J Food Eng 89:361Vink ETH, Davies S (2015) Ind Biotechnol 11:167John RP, Nampoothiri KM, Pandey A (2006) Process Biochem 41:759Madhavan Nampoothiri K, Nair NR, John RP (2010) Biores Technol 101:8493Garlotta D (2001) J Polym Environ 9:63Lim LT, Auras R, Rubino M (2008) Prog Polym Sci 33:820Quiles-Carrillo L, Montanes N, Sammon C, Balart R, Torres-Giner S (2018) Ind Crops Prod 111:878Quiles-Carrillo L, Blanes-Martínez MM, Montanes N, Fenollar O, Torres-Giner S, Balart R (2018) Eur Polym J 98:402Witt U, Müller R-J, Deckwer W-D (1997) J Environ Polym Degrad 5:81Siegenthaler KO, Künkel A, Skupin G, Yamamoto M (2012) Ecoflex® and Ecovio®: biodegradable, performance-enabling plastics. In: Rieger B, Künkel A, Coates GW, Reichardt R, Dinjus E, Zevaco TA (eds) Synthetic biodegradable polymers. Springer, Berlin Heidelberg, p 91Jiang L, Wolcott MP, Zhang J (2006) Biomacromol 7:199Brandelero RPH, Yamashita F, Grossmann MVE (2010) Carbohyd Polym 82:1102Muthuraj R, Misra M, Mohanty AK (2014) J Polym Environ 22:336Porter RS, Wang L-H (1992) Polymer 33(10): 2019Koning C, Van Duin M, Pagnoulle C, Jerome R (1998) Prog Polym Sci 23:707Muthuraj R, Misra M, Mohanty AK (2017) J Appl Polym Sci 135:45726Ryan AJ (2002) Nat Mater 1:8Wu D, Zhang Y, Yuan L, Zhang M, Zhou W (2010) J Polym Sci Part B 48:756Kim CH, Cho KY, Choi EJ, Park JK (2000) J Appl Polym Sci 77:226Supthanyakul R, Kaabbuathong N, Chirachanchai S (2016) Polymer 105:1Na Y-H, He Y, Shuai X, Kikkawa Y, Doi Y, Inoue Y (2002) Biomacromolecules 3:1179Zeng J-B, Li K-A, Du A-K (2015) RSC Adv 5:32546Xanthos M, Dagli SS (1991) Polym Eng Sci 31:929Sundararaj U, Macosko CW (1995) Macromolecules 28:2647Milner ST, Xi H (1996) J Rheol 40:663Villalobos M, Awojulu A, Greeley T, Turco G, Deeter G (2006) Energy 31:3227Torres-Giner S, Montanes N, Boronat T, Quiles-Carrillo L, Balart R (2016) Eur Polym J 84:693Lehermeier HJ, Dorgan JR (2001) Polym Eng Sci 41:2172Liu B, Xu Q (2013) J Mater Sci Chem Eng 1:9Eslami H, Kamal MR (2013) J Appl Polym Sci 129:2418Loontjens T, Pauwels K, Derks F, Neilen M, Sham CK, Serné M (1997) J Appl Polym Sci 65:1813Ojijo V, Ray SS (2015) Polymer 80:1Frenz V, Scherzer D, Villalobos M, Awojulu AA, Edison M, Van Der Meer R (2008) Multifunctional polymers as chain extenders and compatibilizers for polycondensates and biopolymers. In: Technical papers, regional technical conference—society of plastics engineers, p. 3/1678Utracki LA (2002) Can J Chem Eng 80:1008Al-Itry R, Lamnawar K, Maazouz A (2012) Polym Degrad Stab 97:1898Lin S, Guo W, Chen C, Ma J, Wang B (2012) Mater Des (1980–2015) 36: 604Arruda LC, Magaton M, Bretas RES, Ueki MM (2015) Polym Test 43:27Wang Y, Fu C, Luo Y, Ruan C, Zhang Y, Fu Y (2010) J Wuhan Univ Technol Mater Sci Ed 25:774Wei D, Wang H, Xiao H, Zheng A, Yang Y (2015) Carbohyd Polym 123:275Abdelwahab MA, Taylor S, Misra M, Mohanty AK (2015) Macromol Mater Eng 300:299Sun Q, Mekonnen T, Misra M, Mohanty AK (2016) J Polym Environ 24:23Torres-Giner S, Gimeno-Alcañiz JV, Ocio MJ, Lagaron JM (2011) J Appl Polym Sci 122:914Miyata T, Masuko T (1998) Polymer 39:5515Muthuraj R, Misra M, Mohanty AK (2015) J Appl Polym Sci 132:42189Ren J, Fu H, Ren T, Yuan W (2009) Carbohyd Polym 77:576Torres-Giner S, Montanes N, Fenollar O, García-Sanoguera D, Balart R (2016) Mater Des 108:648Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Compr Rev Food Sci Food Saf 9:552Savenkova L, Gercberga Z, Nikolaeva V, Dzene A, Bibers I, Kalnin M (2000) Process Biochem 35:573Costa ARM, Almeida TG, Silva SML, Carvalho LH, Canedo EL (2015) Polym Test 42:115Zhang K, Mohanty AK, Misra M (2012) ACS Appl Mater Interfaces 4:3091Zhang N, Wang Q, Ren J, Wang L (2009) J Mater Sci 44:250Chinsirikul W, Rojsatean J, Hararak B, Kerddonfag N, Aontee A, Jaieau K, Kumsang P, Sripethdee C (2015) Packag Technol Sci 28:741Auras R, Harte B, Selke S (2004) J Appl Polym Sci 92:1790Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Carbohyd Polym 71:235Sanchez-Garcia MD, Gimenez E, Lagaron JM (2007) J Plast Film Sheeting 23:133Lagaron JM (2011) Multifunctional and nanoreinforced polymers for food packaging. In: Multifunctional and nanoreinforced polymers for food packaging. Woodhead Publishing, Cambridge, p 

    Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour

    Full text link
    [EN] Green composites made of polylactide (PLA) filled with almond shell flour (ASF) at a constant weight content of 25¿wt.-% were manufactured by injection molding. In order to increase the interfacial adhesion between the biopolymer and the lignocellulosic fillers, three different compatibilizers were tested, namely multi-functional epoxy-based styrene-acrylic oligomer (ESAO), aromatic carbodiimide (AC), and maleinized linseed oil (MLO). The effect of each compatibilizer on the thermal, mechanical, and thermomechanical properties and water uptake of the injection-molded PLA/ASF pieces was analyzed. The obtained results indicated that all the here-studied compatibilizers had a positive influence on both the thermal stability and the mechanical and thermomechanical performance of the green composite pieces but low impact on their water uptake profile. In addition, the morphological analysis performed at the fracture surfaces of the green composite pieces revealed that the filler¿matrix gap was substantially reduced. Among the tested compatibilizers, ESAO and MLO yielded the highest performance in terms of mechanical strength and ductility, respectively. In the case of MLO, it also offers the advantage of being a plant-derived additive so that its application in green composites positively contributes to the development of sustainable polymer technologies.This research was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) program number MAT2014-59242-C2-1-R and AGL2015-63855-C2-1-R and Generalitat Valenciana (GV) program number GV/2014/008. A. Carbonell-Verdu wants to thank Universitat Politecnica de Valencia (UPV) for his FPI grant. D. Garcia-Garcia wants to thank the Spanish Ministry of Education, Culture and Sports (MECD) for his FPU grant (FPU13/06011). L. Quiles-Carrillo also wants to thank GV for his FPI grant (ACT/2016/182) and the MECD for his FPU grant (FPU15/03812).Quiles-Carrillo, L.; Montanes, N.; Garcia-Garcia, D.; Carbonell-Verdu, A.; Balart, R.; Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B Engineering. 147:76-85. https://doi.org/10.1016/j.compositesb.2018.04.017S768514

    Reversible Mg insertion into chevrel phase Mo6S8 cathode: Preparation, electrochemistry and X-ray photoelectron spectroscopy study

    No full text
    Electrical energy storage is absolute for complete usage of all renewable energy sources. Herein, we have studied the electrochemical performance of Chevrel phase Mo6S8 as cathode material towards rechargeable Mg battery. Solution chemistry route is adopted for the synthesis of Mo6S8. The morphology, phase purity is analyzed by Scanning Electron Microscopy, Transmission Electron Microscopy, and X-Ray Diffraction techniques. The cyclic Voltammetry and Galvanostatic charge-discharge studies confirmed the reversibility of Mg-ion insertion. Herein, Mo6S8 cubes show excellent capacity retention of 70 mAh g(-1) for 200 cycles at C/5 rate. The role of CNT in improving rate performance was also demonstrated. The reasonable reversible capacity, rate performance, and cycling stability reveal the feasibility of Mo6S8 material for future rechargeable Mg battery. In order to study the kinetics of Chevrel phase compound upon cycling, EIS study was carried out. The redox process upon insertion/extraction is investigated by X-ray Photoelectron spectroscopy which shows no change in oxidation state of a transition metal
    corecore