68 research outputs found

    A protocol for efficient plantlet regeneration from leaf derived callus of lablab bean (Lablab purpureus var. lignosus (L) prain)

    Get PDF
    An efficient shoot bud differentiation and multiple shoot induction from leaf derived callus of Lablab bean (Lablab purpureus var. lignosus) have been obtained. Callus induction and shoot multiplication at various frequencies were observed using different concentrations and combinations of auxins (IAA, 2, 4-D and NAA) and cytokinin (RAP). The highest frequency of callus induction was observed on MS medium containing 2, 4-D (3.0 mg/1) and RAP (0.5 mg/1). The green compact nodular calli occurred on NAA (3.0 mg/1) and BAP (0.5 mg/1). Highest percentage of shoot bud formation and multiplication was obtained from a combination of RAP (2.0 mg/1) and NAA (0.5 mg/1). The regenerated shoots were transferred to MS medium containing IBA (1.5 mg/1) for the induction of roots. Rooted plants were transferred to plastic cups and subsequently these were successfully transferred to fields

    Evaluation of polyphenol composition and biological activities of two samples from summer and winter seasons of Ligularia fischeri var. Spiciformis Nakai

    Get PDF
    Phenolic contents, antioxidant and antimicrobial activities were determined by two samples from summer (June) and winter (December) seasons of Ligularia fischeri var. spiciformis Nakai. A total of 24 phenolic compounds were identified by ultra-performance liquid chromatography (UPLC) analysis. Myricetin (1964.35 and 1829.12 μg/g) was the most dominant flavonol compared to quercetin and kaempferol. Salicylic acid (222.80 and 215.25 μg/g) was the most important phenolic compound compared to pyrogallol, caffeic acid, gentisic acid, o-coumaric acid, gallic acid, protocatechuic acid and ferulic acid in summer (June) and winter (December) seasons. Phenolic contents and antioxidant capacities were estimated for the various solvent extracts (petroleum ether, butanol, ethyl acetate, methanol and water). Ethyl acetate extract exhibited the highest phenolic (332.64 and 299.44 mg/g gallic acid equivalent) and flavonoid contents (5.72 and 5.29 mg/g quercetin equivalent) and also the strongest antioxidant activity in summer and winter seasons. Due to these metabolic variations, the antioxidant and antimicrobial activities were increased with summer seasons compared to winter seasons. Our study shows that the samples collected in June had higher phenolic compounds, stronger antioxidative and antimicrobial activity than the samples of L. fischeri leaf extracts collected in December

    In vitro regeneration from internodal explants of bitter melon (Momordica charantia L.) via indirect organogenesis

    Get PDF
    Organogenic callus induction and high frequency shoot regeneration were achieved from internodal explants of bitter melon. About 97.5% of internodal explants derived from 30 day old in vivo grown plants produced green, compact nodular organogenic callus in Murashige and Skoog (MS) plus Gamborg et al. (1968) (B5) medium containing 5.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 2.0 μM thidiazuron (TDZ) after two successive transfers at 11 days interval. Adventitious shoots were produced from organogenic callus when it was transferred to MS medium supplemented with 4.0 μM TDZ, 1.5 μM 2,4-D and 0.07 mM L-glutamine with shoot induction frequency of 96.5% and regeneration of adventitious shoots from callus (48 shoots per explant). Shoot proliferation occurred when callus with emerging shoots was transferred in the same medium at an interval of 15 days. The regenerated shoots were elongated on the same medium. The elongated shoots were rooted in MS medium supplemented with 3.0 μM indole 3-butyric acid (IBA). Rooted plants were acclimatized in green-house and subsequently established in soil with a survival rate of 95%. This protocol yielded an average of 48 shoots per internodal explant after 80 days of culture.Keywords: Adventitious shoots, growth regulators, hardening, organogenic callus, Momordica charanti

    In vitro regeneration from internodal explants of bitter melon (Momordica charantia L.) via indirect organogenesis

    Get PDF
    Organogenic callus induction and high frequency shoot regeneration were achieved from internodal explants of bitter melon. About 97.5% of internodal explants derived from 30 day old in vivo grown plants produced green, compact nodular organogenic callus in Murashige and Skoog (MS) plus Gamborg et al. (1968) (B5) medium containing 5.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 2.0 μM thidiazuron (TDZ) after two successive transfers at 11 days interval. Adventitious shoots were produced from organogenic callus when it was transferred to MS medium supplemented with 4.0 μM TDZ, 1.5 μM 2,4-D and 0.07 mM L-glutamine with shoot induction frequency of 96.5% and regeneration of adventitious shoots from callus (48 shoots per explant). Shoot proliferation occurred when callus with emerging shoots was transferred in the same medium at an interval of 15 days. The regenerated shoots were elongated on the same medium. The elongated shoots were rooted in MS medium supplemented with 3.0 μM indole 3-butyric acid (IBA). Rooted plants were acclimatized in green-house and subsequently established in soil with a survival rate of 95%. This protocol yielded an average of 48 shoots per internodal explant after 80 days of culture.Keywords: Adventitious shoots, growth regulators, hardening, organogenic callus, Momordica charanti

    Effect of silver nanoparticles on phenolic compounds production and biological activities in hairy root cultures of Cucumis anguria

    Get PDF
    The present study describes the elicitor effect of silver ion (Ag+) and biologically synthesized silver nanoparticles (AgNPs) to enhance the biomass accumulation and phenolic compound production as well as biological activities (antioxidant, antimicrobial and anticancer) in genetically transformed root (hairy root) cultures of Cucumis anguria. The biomass of hairy root cultures was significantly increased by AgNPs whereas decreased in Ag+ elicitation at 1 and 2 mg/L. AgNPs-elicited hairy roots produced a significantly higher amount of individual phenolic compounds (flavonols, hydroxycinnamic and hydroxybenzoic acids), total phenolic and flavonoid contents than Ag+-elicited hairy roots. Moreover, antioxidant, antimicrobial and anticancer activities were significantly higher following AgNPs-elicitation compared with that in Ag+-elicited hairy roots. We suggest that AgNPs could be an efficient elicitor in hairy root cultures to increase the phytochemical production

    Jasmonic and salicylic acids enhanced phytochemical production and biological activities in cell suspension cultures of spine gourd (Momordica dioica Roxb)

    Get PDF
    In vitro cell suspension culture was established for the production of commercially valuable phytochemicals in Momordica dioica. The influence of elicitors in jasmonic acid (JA) and salicylic acid (SA) increased their effect on phytochemical production and biomass accumulation in M. dioica. The results indicate that compared with non-elicited cultures, JA- and SA-elicited cell suspension cultures had significantly enhanced phenolic, flavonoid, and carotenoid production, as well as antioxidant, antimicrobial, and antiproliferative activities. Furthermore, elicited cultures produced 22 phenolic compounds, such as flavonols, hydroxycinnamic acids, and hydroxybenzoic acids. Greater biomass production, phytochemical accumulation, and biological activity occurred in JA- than in SA-elicited cell cultures. This study is the first to successfully establish M. dioica cell suspension cultures for the production of phenolic compounds and carotenoids, as well as for biomass accumulation

    Immobilized enzymes as potent antibiofilm agent

    Get PDF
    Biofilm has been a point of concern in hospitals and various industries. They not only cause various chronic infections but are also responsible for the degradation of various medical appliances. Since the last decade, various alternate strategies are being adopted to combat the biofilm formed on various biotic and abiotic surfaces. The use of enzymes as a potent anti-fouling agent is proved to be of utmost importance as the enzymes can inhibit biofilm formation in an eco-friendly and cost-effective way. The physical and chemical immobilization of the enzyme not only leads to the improvement of thermostability and reusability of the enzyme, but also gains better efficiency of biofilm removal. Immobilization of amylase, cellobiohydrolase, pectinase, subtilisin A and β-N-acetyl-glucosaminidase (DspB) are proved to be most effective in inhibition of biofilm formation and removal of matured biofilm than their free forms. Hence, these immobilized enzymes provide greater eradication of biofilm formed on various surfaces and are coming up to be the potent antibiofilm agent.Universidade de Vigo/CISU

    Zinc oxide nanoparticles in meat packaging: A systematic review of recent literature

    Get PDF
    Questions have been raised apropos food spoilage, which may pose a great hazard to the global environment and human health. Amongst bio-safe material that retains photocatalysis and impacts, photo-oxidizing on biological and species chemical are ZnO nanoparticles (ZnO-NPs). In this respect, this current paper covers a wide range of topics, starting from the ZnO-NPs synthesis and antibacterial potential to their functional application in meat packaging. A deep comparison of the physicochemical properties of ZnO-NPs synthesized through different routers was reported. In addition, a special focus has been given to antibacterial mechanisms that underlie synthesis parameters. This review also examined the ZnO-NPs impact on the chemico–physico–mechanical properties of the functional coatings/films features. Likewise, the employment of ZnO-NPs in meat packaging was also evaluated. As safer nanoparticles, ZnO-NPs enhance stored meat product quality by microflora growth limitation and retards lipid/protein oxidation. Remarkably, active packaging comprising ZnO-NPs, synthesized or not by plants, showed an eco-friendly solution and future alternative in the meat industry. Information about these topics could help students and scientific researchers who are engaged in chemical engineering, chemistry and meat technology communities to approach the complex thematic of ZnO-NPs.CYTED | Ref.119RT0568GAIN (Axencia Galega de Innovación) | Ref. IN607A2019/01Universidade de Vigo/CISUG

    Inhibitory Potential of Chromene Derivatives on Structural and Non-Structural Proteins of Dengue Virus

    Get PDF
    Dengue fever is a mosquito-borne viral disease that has become a serious health issue across the globe. It is caused by a virus of the Flaviviridae family, and it comprises five different serotypes (DENV-1 to DENV-5). As there is no specific medicine or effective vaccine for controlling dengue fever, there is an urgent need to develop potential inhibitors against it. Traditionally, various natural products have been used to manage dengue fever and its co-morbid conditions. A detailed analysis of these plants revealed the presence of various chromene derivatives as the major phytochemicals. Inspired by these observations, authors have critically analyzed the anti-dengue virus potential of various 4H chromene derivatives. Further, in silico, in vitro, and in vivo reports of these scaffolds against the dengue virus are detailed in the present manuscript. These analogues exerted their activity by interfering with various stages of viral entry, assembly, and replications. Moreover, these analogues mainly target envelope protein, NS2B-NS3 protease, and NS5 RNA-dependent RNA polymerase, etc. Overall, chromene-containing analogues exerted a potent activity against the dengue virus and the present review will be helpful for the further exploration of these scaffolds for the development of novel antiviral drug candidates
    corecore