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In vitro cell suspension culture was established for the production of commercially valuable phytochem-
icals in Momordica dioica. The influence of elicitors in jasmonic acid (JA) and salicylic acid (SA) 
increased their effect on phytochemical production and biomass accumulation in M. dioica. The results 
indicate that compared with non-elicited cultures, JA- and SA-elicited cell suspension cultures had sig-
nificantly enhanced phenolic, flavonoid, and carotenoid production, as well as antioxidant, antimicrobial, 
and antiproliferative activities. Furthermore, elicited cultures produced 22 phenolic compounds, such as 
flavonols, hydroxycinnamic acids, and hydroxybenzoic acids. Greater biomass production, phytochemi-
cal accumulation, and biological activity occurred in JA- than in SA-elicited cell cultures. This study is 
the first to successfully establish M. dioica cell suspension cultures for the production of phenolic com-
pounds and carotenoids, as well as for biomass accumulation.
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INTRODUCTION

Spine gourd (Momordica dioica Roxb. ex. Willd) is a highly nutritious cucurbit veg-
etable which is also used in traditional medicines from tropical regions [25]. It con-
tains a considerable amount of triterpenoids, steroids, alkaloids, glycosides, saponins, 
polyphenols, carotenoids, vitamins, and other health promoting phytochemicals [22]. 
Polyphenols and carotenoids are used extensively in drugs due to their health benefits, 
such as antioxidant capacity, anti-aging and anti-carcinogenic effects, as well as pro-
tection from cardiovascular diseases [3, 18]. Plant-cell suspension cultures containing 
undifferentiated cells offer an attractive alternative for the production of bioactive 
secondary metabolites under a controlled environment [12]. Recently, successful 
biosynthesis of pharmaceutical compounds in cell suspension cultures have been 
reported in several plants [3, 10, 20]. Plant growth regulators are the most important 
factors in cell growth, differentiation, and metabolite formation [20], but very little 
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information is available about influence of growth regulators on phenol and carote-
noid production in an in vitro plant culture. Elicitation is one of the most efficient 
methods for improving secondary metabolite production in cell and organ cultures 
[9]. Jasmonic (JA) and salicylic acids (SA) are potent elicitors and plant defense 
hormones that play significant roles in regulating plant defense responses against 
numerous biotic and abiotic stresses. Jasmonic acid and SA have previously been 
used as elicitors in cell suspension cultures to enhance secondary metabolite produc-
tion [12]. 

The main objective of this study was to evaluate whether JA and SA elicitors could 
effectively increase biomass, secondary metabolite (phenolic compounds and carot-
enoids) accumulation, as well as antioxidant, antimicrobial, and antiproliferative 
activities in M. dioica cell suspension cultures. 

MATERIALS AND METHODS

Establishment of callus and cell suspension culture

Leaf explants of M. dioica were sterilized following procedures from our previous 
report [25] and aseptically grown on MS [13] medium containing sucrose (30 g/L 
w/v) and TDZ- (0.1, 0.5 and 1.0 mg/L) supplemented agar (8 g/L w/v), either alone 
or in combination with 1.0 mg/L naphthalene acetic acid (NAA), indole-3-acetic acid 
(IAA), or 2,4-dichlorophenoxyacetic acid (2,4-D). Callus cultures were incubated for 
three weeks in a growth chamber at 25 ± 1 °C and a 16-h photoperiod (30 µmol m–2 
s–1; from 40-W white fluorescent lamps). Cell suspension cultures were initiated with 
friable callus placed in 250 mL Erlenmeyer flasks containing MS liquid medium (sup-
plemented with 1.0 mg/L NAA and 0.5 mg/L TDZ). Cultures were kept under con-
tinuous agitation at 110 rpm in an orbital shaker and incubated at under the same 
temperature and light conditions as above. 

Influence of auxins, cytokinins, sucrose, and media sources 
on biomass accumulation

The effects of auxins, cytokinins, sucrose, and media on cell growth and biomass 
production in cell suspension culture were determined. The experimental culture was 
500 mg fresh mass (FM) of cells were grown in liquid MS supplemented with  
40 g/L sucrose containing auxins (naphthalene acetic acid [NAA], indole-acetic acid 
[IAA], and 2,4-dichlorophenoxyacetic acid [2,4-D]) at differing concentrations  
(0, 0.5, 1.0, and 2.0 mg/L), combined with cytokinins (0, 0.1, 0.5, and 1.0 mg/L 
6-benzylaminopurine [BAP] and thidiazuron [TDZ]). The control was MS devoid of 
growth regulators. The effects of using various MS media (B5 [11], NN [15], and 
N6 [5]) and sucrose (10, 20, 30, 40, and 50 g/L) were assessed. Cultures were har-
vested in duplicate at 7, 14, 21, 28, and 35 d post-cultivation, and then analyzed for 
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biomass accumulation and kinetics. Cultures were continuously agitated at 110 rpm 
and incubated in the conditions described under “Establishment of callus and cell 
suspension culture.” After four weeks, the FM and dry mass (DM) of harvested cells 
were assessed.

Effects of jasmonic acid (JA) and salicylic acid (SA) elicitation  
on biomass accumulation and phytochemical production

Various JA or SA elicitor concentrations (0, 25, 50, 100 and 150 µM) were asepti-
cally added on day 21 of cell suspension culture to the MS medium containing 40 g/L 
sucrose, supplemented with 1.0 mg/L NAA and 0.5 mg/L TDZ. The cultures were 
continuously agitated (110 rpm in an orbital shaker) under the conditions described 
in “Establishment of callus and cell suspension culture.” After 28 d of culture, the FM 
and DM of harvested cells were evaluated. Cell suspensions were separated from the 
medium through filtering, rinsed with sterile water, and blotted before FM measure-
ment. The DM was recorded after cell suspensions were oven-dried at 58 °C for 2 d.

Extraction and estimation of individual phenolic compounds using 
ultra-high performance liquid chromatography (UHPLC)

Elicited (JA and SA) and non-elicited cell suspension powder (1 g DM) were extract-
ed following our published protocol [23, 24]. The presence of 22 phenolic com-
pounds in the cell suspensions cultures was ascertained using UHPLC (Accela, USA) 
with a reverse phase column (C18, 2.1 × 100 mm, 2.6 mm). The solvent, standard, and 
gradient procedures were as previously described [23, 24]. Phenolic compounds were 
identified in accordance with previously reported methods [25]. 

Estimation of total phenolic and flavonoid content (TPC and TFC)

Total phenolic content was quantified spectrophotometrically with the Folin–
Ciocalteu assay [25]. Total flavonoid content was determined with the aluminum 
chloride spectrophotometric method [25].

Extraction and estimation of carotenoid content

Carotenoid extraction was conducted following previously described methods [18]. 
Elicited and non-elicited suspension cell samples (1 g) were pulverized in cold ace-
tone (25 mL). The mixture was agitated for 10 min, followed by filtration using 
Whatman No. 1 filter paper. The filtrate was transferred into a separation funnel and 
partitioned with petroleum ether (20 mL). Acetone was removed via washing with 
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distilled water (100 mL) and discarding the lower phase, then repeating the process 
twice more. Next, the petroleum ether layer was filtrated using Whatman No. 1 filter 
paper covered with 5 g of anhydrous sodium sulfate to remove residual water. 
Petroleum ether extracts were pooled and volume-adjusted to 25 mL with petroleum 
ether. Extracts were spectrophotometrically analyzed (300–600 nm) using a UV-vis 
spectrophotometer and absorbance was measured at 450 nm to determine the total 
carotenoid content, calculated with the following formula:

Total carotenoids ( g -carotene g/L) = mL
gcm

µ β
A V
E P
× ×

×
( )
% (
25 10

1 1

4
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where A = Absorbance at 450 nm, V = Total extract volume, P = Sample weight, and 
E1%1cm = Extinction coefficient of β-carotene in petroleum ether = 2592.

Extract preparation

Elicited and non-elicited cell suspension powder (1 g DM) were subjected to extrac-
tion with 50 mL of methanol (95%) and kept at room temperature for 24 h with 
repeated shaking. Subsequently, the solution was passed through Whatman No. 1 
filter paper and concentrated until dry. Dried methanolic extract was then dissolved 
in the minimum amount of methanol necessary and stored at 4 °C until needed for 
subsequent analyses on biological activities.

Antioxidant activities

Previously published protocols [23, 24, 25] were used to measure antioxidant activi-
ties via DPPH free-radical scavenging, reducing power, the phosphomolybdenum 
method, and the metal ion-chelating assay. 

Antibacterial and antifungal activities

Staphylococcus aureus (KACC 10778), Bacillus subtilis (KACC 10111), Pseudomonas 
aeruginosa (KACC 11085), Escherichia coli (KACC 10495), Candida albicans 
(KACC 30062), Aspergillus niger (KACC 41687), and Fusarium oxysporum (KACC 
40053) were used to test for antibacterial and antifungal activity. Tests were per-
formed using the NCCLS disc diffusion method [23, 24, 25].
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Antiproliferative activity 

Two human cancer cell lines (colon HT-29 and estrogen-dependent breast MCF-7) 
were used for cytotoxicity screening of elicited and non-elicited cell culture extracts 
in M. dioica. Briefly, human cells were added to 96-well plates (5 × 103 cells well-1) 
and treated for 48 h with M. dioica culture extracts (12.5, 25, 50, 100, and 200 µg/
mL per elicited and non-elicited group). Cell viability was assayed using the MTT 
[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] colorimetric meth-
od [8]. 

Experimental design and data analysis

All experiments were performed in triplicate and the data are presented as mean ± 
standard deviation (SD). One-way ANOVA analysis followed by a Duncan’s test was 
used to determine significant differences (P ≤ 0.05) in the statistical software package. 

RESULTS AND DISCUSSION

Establishment of callus culture

The highest callus frequency (89.0%; with yellowish friable features) occurred after 
three weeks of culturing M. dioica leaf explants with 1.0 mg/L NAA and 0.5 mg/L 
TDZ. Used alone, 0.5 mg/L TDZ resulted in a maximum callus frequency of 59.0%, 
with green and friable features. However, calli were green or white and compact in 
response to TDZ combined with IAA or 2,4-D, both of which induced less callogen-
esis than the NAA plus TDZ combination. As a potent bioregulator of in vitro mor-
phogenesis, TDZ mimics effects of both auxin and cytokinin on growth and differen-
tiation in cultured explants [19]. Furthermore, TDZ was more efficient for callus 
formation when combined with NAA than with the other two auxins. This outcome 
was corroborated by a previous study in Rhodiola crenulata cell suspension cultures, 
showing friable callus induction by a TDA and NAA mixture [19].

Effects of growth regulators, sucrose, media, and growth kinetics 
on biomass accumulation in cell suspension culture

Different concentrations of three auxins (NAA, 2,4-D, and IAA) were tested for their 
effects on M. dioica cell suspension cultures. Among them, 1.0 mg/L NAA in MS led 
to more biomass accumulation than 2,4-D and IAA (Fig. 1A, B, C). When combined 
with 0.5 mg/L, 1.0 mg/L NAA induced maximum biomass accumulation (Fig. 1D). 
This combination also produced a high phenolic content in callus cultures of 
Artemisia absinthium [3] and Lallemantia iberica [16]. Next, we investigated the 
effects of sucrose (10–50 g/L in MS) on biomass accumulation (Fig. 1E). We found 
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that 40 g/L sucrose was suitable for biomass accumulation. Our results are corrobo-
rated by another study that also revealed higher biomass accumulation and secondary 
metabolite production after treatment with 40 g/L of sucrose [14, 20]. We then dem-
onstrated that of the different media tested (MS, NN, B5, and N6), MS was superior 
and induced maximum biomass accumulation (Fig. 1F). Several previous studies 
have also found MS suitable for biomass accumulation and secondary metabolite 
production in cell suspension cultures [3, 20]. Tracking biomass (FM and DM) accu-

Fig. 1. Effects of plant growth regulators, sucrose, media, elicitors, and growth kinetics on biomass accu-
mulation in M. dioica cell suspension cultures. A. naphthalene acetic acid (NAA); B. 2,4-dichlorophen-
oxyacetic acid (2,4-D); C. indole-3-acetic acid (IAA); D. NAA 1.0 mg/L with thidiazuron (TDZ); E. 
sucrose; F. media; G. growth kinetics; H. jasmonic acid (JA); I. salicylic acid (SA). Means ± SD of trip-
licates followed by the same letters are not significantly different according to Duncan’s test at P ≤ 0.05
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mulation patterns across the course of the experiment showed that levels were at 
maximum on day 28 (Fig. 1G). In accordance with our study, 28-d-old cell suspen-
sion culture of W. somnifera [14] and A. absinthium [3] exhibited high metabolite 
production and biomass accumulation. 

Influence of elicitors (JA and SA) on biomass accumulation, carotenoid 
production, and phenolic compound production in cell suspension culture

The effect of elicitors on biomass accumulation, as well as the production of phe-
nolic compound and carotenoids, was tested in M. dioica cell suspension cultures. 
Elicitors significantly increased biomass (FM and DM) accumulation and phyto-
chemical (phenols and carotenoids) production, suggesting a synergistic effect on cell 
proliferation and phytochemical biosynthesis (Figs 1H, I and 2A–C). Biomass accu-
mulation in 100 µM JA- or SA-cultured cells was significantly higher than accumula-
tion in non-elicited cell suspension cultures (Fig. 1H, I). Additionally, carotenoid, 
total phenolic, and flavonoid content was higher in 100 µM elicited cell cultures than 
in non-elicited ones (Fig. 2A–C). Our results were consistent with previous reports 
on JA and SA elicitation increasing total phenolic and flavonoid content in cell sus-
pension cultures of Panax ginseng [2] and Artemisia absinthium [3, 4]. Another study 
also demonstrated that the highest pigment production (a sixfold increase in carote-
noid yield from that of non-elicited cells) was achieved on cultures treated with 
methyl jasmonate (MeJA), supporting our results [18].

Qualitative and quantitative evaluations were performed with Ultra-HPLC on phe-
nolic compounds from non-elicited cell suspension cultures (MS containing 40 g/L 
sucrose supplemented with 1.0 mg/L NAA and 0.5 mg/L TDZ) and elicited cell 
extracts (Table 1). Phenolic compounds were identified through retention-time com-
parisons, and calibration curves were then calculated from UV spectra of authentic 
standards and the quantitative data. Both elicited and non-elicited cell culture extracts 
contained flavonols, hydroxybenzoic acid, and hydroxycinnamic acid, but the former 
contained more of these compounds (Table 1). This action of JA and SA is consistent; 
they enhance phenolic acid composition in Vitis vinifera suspension culture [17], as 
well as increasing p-hydroxybenzoic and syringic acid content in Schisandra chinen-
sis calli [21]. We also found that gentisic, gallic, p-hydroxybenzoic, syringic, caffeic, 
and ferulic acids were higher in JA- and SA-elicited cell cultures than in non-elicited 
cell cultures. Similar to our study, gallic acid content was higher in elicited cell sus-
pension cultures of Acer ginnala [7] and A. absinthium [3], while caffeic acid content 
was higher in SA-elicited cell cultures of Salvia miltiorrhiza [6]. Furthermore, we 
showed that quercetin, rutin, myricetin, kaempferol, and naringenin content was 
higher in JA- and SA-elicited cell cultures than in non-elicited cell cultures. Veratric 
acid, hesperidin, and vanillin levels were also higher in elicited cell cultures than  
in non-elicited cell cultures (Table 1). Corroborating our results, MeJA and SA led  
to flavonoid content being higher by 2.1- and 1.5-fold, respectively, in Hypericum 
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Table 1
Ultra-high performance liquid chromatography analysis of phenolic compounds in jasmonic acid 

(JA)- or salicylic acid (SA)-elicited and non-elicited M. dioica cell suspension cultures

No. Phenolic compounds
Concentration (µg/g dry mass)

Non-elicited SA-elicited JA-elicited

Hydroxybenzoic acid
1 p-Hydroxybenzoic acid 121.12±1.0g 135.25±1.5g 149.15±1.0i

2 Gallic acid 352.50±1.5d 374.12±2.0d 395.21±2.0e

3 Protocatechuic acid 36.21±1.0k 28.10±1.0j 31.00±1.0n

4 Syringic acid 51.50±1.0j 74.25±1.0j 98.52±1.5k

5 Gentisic acid 428.71±2.0b 445.65±2.5b 498.15±2.0b

Total 990.04c 1057.37b 1172.03a

Hydroxycinnamic acid

6 Caffeic acid 424.15±2.5b 425.00±2.0c 434.25±2.0d

7 p-Coumaric acid 84.42±1.5i 71.23±1.0j 79.50±1.0l

8 Ferulic acid 115.12±1.5g 137.15±1.5g 158.20±1.5h

9 Chlorogenic acid 18.00±1.0m 21.15±1.0j 29.31±1.0n

10 o-Coumaric acid 22.10±1.0m 25.10±1.0j 25.00±1.0o

11 t-Cinnamic acid 11.21±0.5n 12.10±0.5k 18.00±0.8p

Total 675.00c 691.73b 744.26a

Flavonols

12 Myricetin 244.50±2.0f 292.30±2.0f 315.21±1.5g

13 Quercetin 440.15±1.0a 471.12±2.0a 495.50±2.0a

14 Kaempferol 325.40±2.0e 351.00±1.5e 369.00±2.0f

15 Catechin 380.12±1.0c 344.15±3.0e 372.45±2.5f

16 Rutin 420.00±1.5b 442.00±2.0b 465.50±2.0c

17 Naringenin 105.11±1.0h 114.00±1.0h 125.12±1.0j

18 Biochanin A 19.22±0.5m 21.15±1.0j  25.00±1.0o

Total 1934.50c 2035.72b 2167.78a

Others

19 Vanillin 20.10±1.0m 25.00±1.0j  27.15±1.0o

20 Veratric acid 110.15±1.0h 95.00±1.0i 100.11±1.0k

21 Homogentisic acid 31.20±0.5l 35.15±0.5i  42.00±0.5m

22 Hesperidin 41.14±1.0k 45.00±1.0h  44.00±0.7m

Total 202.59b 200.15c 213.26a

Mean ± SD within a row followed by the same letters are not significantly different according to Duncan’s Test 
at P ≤ 0.05.
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perforatum cell suspension cultures than in non-elicited cells [26]. Together, these 
data suggest that elicitation with JA or SA is a promising alternative method for 
increasing phytochemical (phenols, flavonoids, and carotenoids) production and cell 
growth in M. dioica cell suspension cultures.

Effects of elicitors (JA and SA) on antioxidant activity  
in cell suspension culture

The antioxidant capacity of elicited and non-elicited cell cultures was evaluated using 
free radical scavenging, reducing potential, phosphomolybdenum assays, and metal 
chelating activity. Jasmonic acid- and SA-elicited cells increased antioxidant activity 
in Panax ginseng [2] and A. absinthium [3]. Similarly, higher antioxidant activity was 
exhibited in elicited cells than in non-elicited cells (Fig. 2D). Elicited cells also had 
more antioxidant potential than non-elicited cell cultures, as seen in the former’s 
reducing capacity (Fig. 2E). Using the phosphomolybdenum method, we found that 
the antioxidant capacity of elicited cell culture extracts was higher than that of non-
elicited cell culture extracts (Fig. 2F). Finally, elicited cells had a greater percentage 
of metal scavenging capacity than non-elicited cells (Fig. 2G). The higher phenolic, 
flavonoid, and carotenoid levels in the JA- and SA-cultured cells directly influenced 
their antioxidant potential. 

Effects of elicitors (JA and SA) on antimicrobial activity  
in cell suspension culture

Elicited cell suspension cultures from various plants had increased antibacterial and 
antifungal activity [1]. Disc diffusion analysis indicated that elicited and non-elicit-
ed cell culture extracts both exhibited (Gram-positive and Gram-negative) antibacte-
rial and antifungal activities. However, antibacterial and antifungal activities were 
higher in JA and SA cell culture extracts than in non-elicited cells (Fig. 2H). These 
results were compared to the antibacterial and antifungal effects, respectively, of 
chloramphenicol and thymol as positive controls, thereby demonstrating that sus-
pension cell culture extracts of M. dioica could be used for treating bacterial and 
fungal diseases.

→
Fig. 2. Effects of JA and SA on phytochemical production, as well as antioxidant, antimicrobial, and 
antiproliferative activities in M. dioica cell suspension cultures. A. Carotenoid content; B. total flavonoid 
content; C. total phenolic content; D. free radical-scavenging activity (using DPPH); E. reducing power; 
F. results from the phosphomolybdenum method; G. metal chelating activity; H. antimicrobial activity 
assayed with the disc diffusion method; I. MCF-7 cell line inhibition; J. HT-29 cell line inhibition. 
Means ± SD of triplicates followed by the same letters are not significantly different according to 

Duncan’s test at P ≤ 0.05
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Effects of elicitors (JA and SA) on antiproliferative activity  
in cell suspension culture

Antiproliferative activities against cancer cell lines (MCF-7 and HT-29) in elicited 
and non-elicited cell extracts were evaluated. The inhibitory abilities of these extracts 
were compared with those of standard tamoxifen and 5-fluorouracil for the MCF-7 
and HT-29 cell lines, respectively (Fig. 2I, J). Elicited cell extracts (200 µg/mL) 
showed the strongest antiproliferative activity against MCF-7 and HT-29 cells, 
whereas non-elicited cell extracts displayed weak inhibition. We also observed that 
MCF-7 cells experience more inhibition than HT-29 cells (Fig. 2I, J). In line with our 
results, a previous study also reported that phytochemical constituents inhibited 
MCF-7 and HT-29 cell proliferation [27]. In summary, the MTT assay results indi-
cated M. dioica cell suspension cultures can inhibit the growth of breast and colon 
cancer cell lines. 

CONCLUSIONS

Cell suspension cultures of M. dioica have the potential for commercial-scale studies 
by the pharmaceutical industry. Phenolic groups (e.g. flavonols, hydroxybenzoic acid, 
hydroxycinnamic acid, and derivatives) were higher in JA- and SA-elicited culture 
cells than in non-elicited cell cultures. Bioactive compounds (carotenoids, phenolic 
compounds, and flavonoids) and biological activities (antioxidant, antibacterial, anti-
fungal, and anticancer) were also higher in JA- and SA-elicited cell cultures than in 
non-elicited cultures. This established elicitor system could be useful for biochemical 
and bioprocess engineering aimed at efficiently producing bioactive compounds in  
M. dioica cell suspension cultures.
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