11 research outputs found

    How many came home? Evaluating ex‐situ conservation of green turtles in the Cayman Islands

    Full text link
    Ex-situ management is an important conservation tool that allows the preservation of biological diversity outside natural habitats while supporting survival in the wild. Captive breeding followed by reintroduction is a possible approach for endangered species conservation and preservation of genetic variability. The Cayman Turtle Centre Ltd was established in 1968 to market green turtle (Chelonia mydas) meat and other products and replenish wild populations, thought to be locally extirpated, through captive breeding. We evaluated the effects of this reintroduction program using molecular markers (13 microsatellites, 800bp D-loop and STR mtDNA sequences) from captive breeders (N=257) and wild nesting females (N=57) (sampling period: 2013-2015). We divided the captive breeders into three groups: founders (from the original stock), and then two subdivisions of F1 individuals corresponding to two different management strategies, cohort 1995 ("C1995)" and multicohort F1 ("MCF1"). Loss of genetic variability and increased relatedness was observed in the captive stock over time. We found no significant differences in diversity among captive and wild groups, and similar or higher levels of haplotype variability when compared to other natural populations. Using parentage and sibship assignment, we determined that 90% of the wild individuals were related to the captive stock. Our results suggest a strong impact of the reintroduction program on the present recovery of the wild green turtle population nesting in the Cayman Islands. Moreover, genetic relatedness analyses of captive populations are necessary to improve future management actions to maintain genetic diversity in the long term and avoid inbreeding depression

    Intraoperative ketorolac in high-risk breast cancer patients : A prospective, randomized, placebo-controlled clinical trial

    Get PDF
    Funding: This work is financed by grants received by PF, in the name of his institution: the Anticancer Fund (no grant number) (www.anticancerfund.org); the Belgian Society of Anaesthesia and Resuscitation (no grant number) (www.sarb.be); the Fondation Saint-Luc (no grant number) (www.uclouvain.be); the Commission du Patrimoine of the Université catholique de Louvain, St-Luc Hospital (exceptional grant, no number) (www.uclouvain.be). None of the funders had any role in the study design, data collection and analysis, decision to publish or preparation of the manuscript except the scientific advise of GB, scientific director of the Anticancer Fund.Peer reviewedPublisher PD

    Differential methylation between sex in adult green sea turtle skin biopsies

    Get PDF
    In marine turtles, the sex of hatchlings is determined by their egg incubation temperature. Global warming may increase the extinction risk by skewing hatchling sex ratios. Assessment of this risk at the population level requires the identification of sex in hatchlings and juveniles. However, available methods are typically lethal, highly invasive, or difficult to conduct at a large scale. Changes in DNA methylation, an epigenetic modification, have been characterized as part of sex differentiation pathways in some species with environmentally determined sex, but so far not in marine turtles. Neither have epigenetic biomarkers for sex been developed into rapid assays suited to research on wildlife. In this study, we aimed to develop a rapid, minimally invasive, and inexpensive method to identify the sex of marine turtles. We used reduced representation bisulfite sequencing DNA methylation data from adult green sea turtle (Chelonia mydas) skin biopsies to identify 16 genomic regions exhibiting differential methylation between males and females (adjusted p-value < 0.01). We designed methylation sensitive qPCR assays for these regions and tested their capacity to identify the sex of turtles ranging in age between 3-34 years. The qPCR assay identified the correct sex in turtles > 17 years. However, the sex of younger turtles could not be accurately identified. This suggests the sex differences distinguishable by the assay were adult specific, reflecting the training data on which the sex-specific regions were identified, and likely linked to late-stage ontogenetic changes associated with sexual maturity. Epigenetic biomarkers are a promising tool for wildlife research because they can be minimally invasive and high throughput. Future research into sex-specific differentially methylated regions in hatchlings and juveniles should be based on genome-wide DNA methylation data from a wider age range, which includes hatchlings

    Satellite Tracking of Head-Started Juvenile Green Turtles (<i>Chelonia mydas</i>) Reveals Release Effects and an Ontogenetic Shift

    No full text
    Juveniles of marine species, such as sea turtles, are often understudied in movement ecology. To determine dispersal patterns and release effects, we released 40 satellite-tagged juvenile head-started green turtles (Chelonia mydas, 1–4 years) from two separate locations (January and July 2023) off the coast of the Cayman Islands. A statistical model and vector plots were used to determine drivers of turtle directional swimming persistence and the role of ocean current direction. More than half (N = 22) effectively dispersed in 6–22 days from the islands to surrounding areas. The January turtles radiated out (185–1138 km) in distinct directions in contrast to the northward dispersal of the July turtles (27–396 km). Statistical results and vector plots supported that daily swimming persistence increased towards the end of tracks and near coastal regions, with turtles largely swimming in opposition to ocean currents. These results demonstrate that captive-reared juvenile greens have the ability to successfully navigate towards key coastal developmental habitats. Differences in dispersal (January vs. July) further support the importance of release timing and location. Our results inform conservation of the recovering Caymanian green turtles and we advise on how our methods can be improved and modified for future sea turtle and juvenile movement ecology studies

    Novel Microsatellite Tags Hold Promise for Illuminating the Lost Years in Four Sea Turtle Species

    No full text
    After hatching, sea turtles leave the nest and disperse into the ocean. Many years later, they return to their natal coastlines. The period between their leaving and their returning to natal areas, known as the “Lost Years”, is poorly understood. Satellite tracking studies aimed at studying the “Lost Years” are challenging due to the small size and prolonged dispersal phases of young individuals. Here, we summarize preliminary findings about the performance of prototype microsatellite tags deployed over a three-year period on 160 neonate to small juvenile sea turtles from four species released in the North Atlantic Ocean. We provide an overview of results analyzing tag performance with metrics to investigate transmission characteristics and causes of tag failure. Our results reveal that, despite certain unfavorable transmission features, overall tag performance was satisfactory. However, most track durations were shorter than those observed on individuals of similar size in other studies and did not allow for detailed analyses of trajectories and turtle behavior. Our study further suggests that tracking durations are correlated with the targeted species, highlighting a lack of robustness against some neritic behaviors. Unprecedented diving data obtained for neonate sea turtles in this study suggest that the vertical behaviors of early juveniles are already too strenuous for these miniaturized tags. Our findings will help to inform the biologging research community, showcasing recent technological advances for the species and life stages within our study
    corecore