9 research outputs found

    New insights to the functional role of the T cell-Antigen Presenting Cell immunological synapse

    No full text
    Three innovative and complementary morphological approaches were employed to study the T cell/antigen presenting cell (APC) interaction: (i) high resolution three-dimensional confocal microscopy of the T cell-APC contact site; (ii) time lapse video recording in living T cells of [Ca2+]I and changes in distribution of various GFP fusion proteins with TCR/CD3-zetacomplex associated- and other signaling components; (iii) measurement of lateral TCR mobility and that of recruited signaling components using techniques based on fluorescence recovery after photo-bleaching. These approaches were combined with biochemical and functional experiments to investigate two principal issues: (A) Recruitment and the three-dimensional arrangement of receptors and signaling components at the contact site between human CD4+ T lymphocytes and APCs, (B) Structure of the immunological synapse formed at the contact site between cytotoxic T lymphocytes (CTLs) and target cells. We discuss evidence indicating that TCR engagement and triggering can occur in the absence of large-scale molecular segregation into the T cell-APC contact site. Taken together our results indicate that although not required for TCR engagement and triggering, formation of the IS is important to reinforce TCR-mediated signal transduction and achieve full T cell activation

    Early steps of follicular lymphoma pathogenesis.

    No full text
    International audienceFollicular lymphoma (FL) pathogenesis is a complex and fascinating multi-hit process, escalating along successive derailments of the distinctive molecular and cellular mechanisms paving B-cell differentiation and activation. This progressive subversion of B-cell receptor diversification mechanisms and B-cell homeostasis likely occurs during a protracted preclinical phase of asymptomatic growth, in which premalignant clones already disseminate and establish "niches" in secondary lymphoid organs. Following FL diagnosis, a parallel indolent behavior is observed in most patients, slowly progressing over a period of many years, to eventually generate a highly refractory (and in some case transform into an aggressive subtype of) lymphoma. Novel insights in human germinal center B-cell biology recently allowed a more comprehensive understanding of the various illegitimate events sequentially involved in the premalignant progression phases. In this review, we will discuss how these new data have modified our perception of early FL pathogenesis, the new questions and challenges it opened up, and how this knowledge could impact on innovative programs of early detection, follow-up, and patient management

    Critical roles for Rac GTPases in T-cell migration to and within lymph nodes

    No full text
    Naive T cells continuously recirculate between secondary lymphoid tissue via the blood and lymphatic systems, a process that maximizes the chances of an encounter between a T cell and its cognate antigen. This recirculation depends on signals from chemokine receptors, integrins, and the sphingosine-1-phosphate receptor. The authors of previous studies in other cell types have shown that Rac GTPases transduce signals leading to cell migration and adhesion; however, their roles in T cells are unknown. By using both 3-dimensional intravital and in vitro approaches, we show that Rac1- and Rac2-deficient T cells have multiple defects in this recirculation process. Rac-deficient T cells home very inefficiently to lymph nodes and the white pulp of the spleen, show reduced interstitial migration within lymph node parenchyma, and are defective in egress from lymph nodes. These mutant T cells show defective chemokine-induced chemotaxis, chemokinesis, and adhesion to integrin ligands. They have reduced lateral motility on endothelial cells and transmigrate in-efficiently. These multiple defects stem from critical roles for Rac1 and Rac2 in transducing chemokine and sphingosine-1-phosphate receptor 1 signals leading to motility and adhesion

    Germinal center reentries of BCL2-overexpressing B cells drive follicular lymphoma progression

    No full text
    International audienceIt has recently been demonstrated that memory B cells can reenter and reengage germinal center (GC) reactions, opening the possibility that multi-hit lymphomagenesis gradually occurs throughout life during successive immunological challenges. Here, we investigated this scenario in follicular lymphoma (FL), an indolent GC-derived malignancy. We developed a mouse model that recapitulates the FL hallmark t(14;18) translocation, which results in constitutive activation of antiapoptotic protein B cell lymphoma 2 (BCL2) in a subset of B cells, and applied a combination of molecular and immunofluorescence approaches to track normal and t(14;18)(+) memory B cells in human and BCL2-overexpressing B cells in murine lymphoid tissues. BCL2-overexpressing B cells required multiple GC transits before acquiring FL-associated developmental arrest and presenting as GC B cells with constitutive activation-induced cytidine deaminase (AID) mutator activity. Moreover, multiple reentries into the GC were necessary for the progression to advanced precursor stages of FL. Together, our results demonstrate that protracted subversion of immune dynamics contributes to early dissemination and progression of t(14;18)(+) precursors and shapes the systemic presentation of FL patients

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part one

    No full text
    corecore