22 research outputs found

    Analysis of the physical mechanisms limiting performance and reliability of GaN based HEMTs

    No full text
    Ce manuscrit présente les résultats d’une analyse exhaustive des mécanismes physiques qui limitent les performances et la fiabilité des transistors à haute mobilité d’électrons (HEMT) sur nitrure de gallium (GaN). En particulier : • Les phénomènes de dégradation à fort champ électrique des HEMT sur GaN sont analysés en comparant les données expérimentales avec les résultats de simulations physiques. Des stresses DC de 150 heures ont été effectués en conditions de canal ouvert et de pincement. Les effets des dégradations qui ont caractérisé ces deux types de stresses sont les suivants: une chute de courant DC de drain, une amplification des effets de gate-lag, et une diminution du courant inverse de grille. Les simulations physiques indiquent que la génération simultanée de piéges de surface (et/ou barrière) et de volume peut expliquer tous les modes de dégradation décrits plus haut. Les mesures expérimentales ont également montré que le stress en canal ouvert a causé une chute de la transconductance seulement pour de fortes valeurs de la tension VGS, alors que le stress au pincement a provoqué une chute de transconductance uniforme pour toutes les valeurs de VGS. Ce comportement peut être reproduit par la simulation physique pourvu que, dans le cas de stress a canal ouvert, on considère que les piéges s’accumulent au long d’une vaste région qui s’étend latéralement du bord de la grille vers le contact de drain, tandis que, dans le cas du stress au pincement, on considère que la génération des pièges ait lieu dans une portion plus petite de la zone d’accès à proximité de la grille et qu’elle soit accompagnée par une grande dégradation des paramètres de transport du canal. Enfin on propose que les électrons chauds et l’augmentation de la contrainte par le champ électrique soient à l’origine des dégradations observées après les stresses a canal ouvert et au pincement respectivement. • Les piéges dans les HEMT sur GaN ont été caractérisés en utilisant les techniques de DLTS et leur comportement associé de charge/décharge est interprété à l’aide des simulations physiques. Sous certaines conditions de polarisation, les piéges du buffer peuvent produire de faux signaux de piéges de surface, c'est-à-dire, le même type de signaux I-DLTS et ICTS attribués généralement aux piéges de surface. Clarifier cet aspect est très important à la fois pour les tests de fiabilité et pour l’optimisation des dispositifs, car il peut provoquer une identification erronée du mécanisme de dégradation, et par conséquent induire une mauvaise correction des procédés technologiques. • Les mécanismes physiques qui provoquent l’effondrement du courant RF dans les HEMT sur GaN sont analysés par le biais de mesures expérimentales et de simulations physiques. Ce travail propose les conditions suivantes : i) les piéges du buffer aussi bien que ceux de surface peuvent contribuer à l’effondrement du courant RF à travers un mécanisme identique qui impliquerait la capture et l’émission des électrons provenant de la grille; ii) la passivation de la surface diminue considérablement l’effondrement du courant RF par la réduction du champ électrique en surface et la diminution qui en découle de l’injection d’ électrons de la grille vers les pièges ; iii) pour des densités de piéges de surface inférieures à 9 × 1012 cm-2 , des barrières de potentiel superficiels dans l’ordre de 1-2 eV peuvent coexister avec des piéges de surface ayant des énergies plus faibles et qui causent l’effondrement du courant RF caractérisé par des constantes de temps relativement courtes. • Les effets de l’effondrement du courant dans les HEMT sur GaN sont étudiés en utilisant les résultats de mesures expérimentales et de simulations physiques. D’après les mesures pulsées, les dispositifs employés montrent un gate-lag considérable et un drain-lag négligeable qui peuvent être attribués à la présence de piéges de surface et de buffer respectivement.This thesis reports the results of an extensive analysis of the physical mechanisms that limit the performance and reliability of gallium nitride (GaN) based High Electron Mobility Transistors (HEMT). In particular: • High electric field degradation phenomena are investigated in GaN-capped AlGaN/GaN HEMTs by comparing experimental data with numerical device simulations. Under power- and OFF-state conditions, 150-h DC stresses were carried out. Degradation effects characterizing both stress experiments were as follows: a drop in the dc drain current, the amplification of gate-lag effects, and a decrease in the reverse gate leakage current. Numerical simulations indicate that the simultaneous generation of surface (and/or barrier) and buffer traps can account for all of the aforementioned degradation modes. Experiments also showed that the power-state stress induced a drop in the transconductance at high gate–source voltages only, whereas the OFF-state stress led to a uniform transconductance drop over the entire gate-source-voltage range. This behavior can be reproduced by simulations provided that, under the power-state stress, traps are assumed to accumulate over a wide region extending laterally from the gate edge toward the drain contact, whereas, under the OFF-state stress, trap generation is supposed to take place in a narrower portion of the drain-access region close to the gate edge and to be accompanied by a significant degradation of the channel transport parameters. Channel hot electrons and electric-field-induced strain-enhancement are finally suggested to play major roles in power-state and off-state degradation, respectively. • Traps are characterized in AlGaN-GaN HEMTs by means of DLTS techniques and the associated charge/discharge behavior is interpreted with the aid of numerical device simulations. Under specific bias conditions, buffer traps can produce ‘‘false’’ surface-trap signals, i.e. the same type of current-mode DLTS (I DLTS) or gate-lag signals that are generally attributed to surface traps. Clarifying this aspect is important for both reliability testing and device optimization, as it can lead to erroneous identification of the degradation mechanism, thus resulting in wrong correction actions on the technological process. • The physical mechanisms underlying RF current collapse effects in AlGaN-GaN high electron mobility transistors are studied by means of measurements and numerical device simulations. This work suggests the following conclusions: i) both surface and buffer traps can contribute to RF current collapse through a similar physical mechanism involving capture and emission of electrons tunneling from the gate; ii) surface passivation strongly mitigates RF current collapse by reducing the surface electric field and inhibiting electron injection into traps; iii) for surface-trap densities lower than 9 × 1012 cm-2, surface-potential barriers in the 1–2 eV range can coexist with surface traps having much a shallower energy and, therefore, inducing RF current-collapse effects characterized by relatively short time constants. • Current collapse effects are investigated in AlGaN/GaN HEMTs by means of measurements and numerical device simulations. According to pulsed measurements, the adopted devices exhibit a significant gate-lag and a negligible drain-lag ascribed to the presence of surface and buffer traps, respectively. Furthermore, illumination of the devices with two specific wavelengths can result in either a recovering of current collapse or a decrease in the gate current. On the other hand, numerical device simulations suggest that the kink effect can be explained by electron trapping into barrier traps and the subsequent electron emission after a critical electric-field value is reached

    Analyse des mécanismes physiques qui limitent les performances et la fiabilité des HEMTs sur GaN

    No full text
    Ce manuscrit présente les résultats d’une analyse exhaustive des mécanismes physiques qui limitent les performances et la fiabilité des transistors à haute mobilité d’électrons (HEMT) sur nitrure de gallium (GaN). En particulier : • Les phénomènes de dégradation à fort champ électrique des HEMT sur GaN sont analysés en comparant les données expérimentales avec les résultats de simulations physiques. Des stresses DC de 150 heures ont été effectués en conditions de canal ouvert et de pincement. Les effets des dégradations qui ont caractérisé ces deux types de stresses sont les suivants: une chute de courant DC de drain, une amplification des effets de gate-lag, et une diminution du courant inverse de grille. Les simulations physiques indiquent que la génération simultanée de piéges de surface (et/ou barrière) et de volume peut expliquer tous les modes de dégradation décrits plus haut. Les mesures expérimentales ont également montré que le stress en canal ouvert a causé une chute de la transconductance seulement pour de fortes valeurs de la tension VGS, alors que le stress au pincement a provoqué une chute de transconductance uniforme pour toutes les valeurs de VGS. Ce comportement peut être reproduit par la simulation physique pourvu que, dans le cas de stress a canal ouvert, on considère que les piéges s’accumulent au long d’une vaste région qui s’étend latéralement du bord de la grille vers le contact de drain, tandis que, dans le cas du stress au pincement, on considère que la génération des pièges ait lieu dans une portion plus petite de la zone d’accès à proximité de la grille et qu’elle soit accompagnée par une grande dégradation des paramètres de transport du canal. Enfin on propose que les électrons chauds et l’augmentation de la contrainte par le champ électrique soient à l’origine des dégradations observées après les stresses a canal ouvert et au pincement respectivement. • Les piéges dans les HEMT sur GaN ont été caractérisés en utilisant les techniques de DLTS et leur comportement associé de charge/décharge est interprété à l’aide des simulations physiques. Sous certaines conditions de polarisation, les piéges du buffer peuvent produire de faux signaux de piéges de surface, c'est-à-dire, le même type de signaux I-DLTS et ICTS attribués généralement aux piéges de surface. Clarifier cet aspect est très important à la fois pour les tests de fiabilité et pour l’optimisation des dispositifs, car il peut provoquer une identification erronée du mécanisme de dégradation, et par conséquent induire une mauvaise correction des procédés technologiques. • Les mécanismes physiques qui provoquent l’effondrement du courant RF dans les HEMT sur GaN sont analysés par le biais de mesures expérimentales et de simulations physiques. Ce travail propose les conditions suivantes : i) les piéges du buffer aussi bien que ceux de surface peuvent contribuer à l’effondrement du courant RF à travers un mécanisme identique qui impliquerait la capture et l’émission des électrons provenant de la grille; ii) la passivation de la surface diminue considérablement l’effondrement du courant RF par la réduction du champ électrique en surface et la diminution qui en découle de l’injection d’ électrons de la grille vers les pièges ; iii) pour des densités de piéges de surface inférieures à 9 × 1012 cm-2 , des barrières de potentiel superficiels dans l’ordre de 1-2 eV peuvent coexister avec des piéges de surface ayant des énergies plus faibles et qui causent l’effondrement du courant RF caractérisé par des constantes de temps relativement courtes. • Les effets de l’effondrement du courant dans les HEMT sur GaN sont étudiés en utilisant les résultats de mesures expérimentales et de simulations physiques. D’après les mesures pulsées, les dispositifs employés montrent un gate-lag considérable et un drain-lag négligeable qui peuvent être attribués à la présence de piéges de surface et de buffer respectivement.This thesis reports the results of an extensive analysis of the physical mechanisms that limit the performance and reliability of gallium nitride (GaN) based High Electron Mobility Transistors (HEMT). In particular: • High electric field degradation phenomena are investigated in GaN-capped AlGaN/GaN HEMTs by comparing experimental data with numerical device simulations. Under power- and OFF-state conditions, 150-h DC stresses were carried out. Degradation effects characterizing both stress experiments were as follows: a drop in the dc drain current, the amplification of gate-lag effects, and a decrease in the reverse gate leakage current. Numerical simulations indicate that the simultaneous generation of surface (and/or barrier) and buffer traps can account for all of the aforementioned degradation modes. Experiments also showed that the power-state stress induced a drop in the transconductance at high gate–source voltages only, whereas the OFF-state stress led to a uniform transconductance drop over the entire gate-source-voltage range. This behavior can be reproduced by simulations provided that, under the power-state stress, traps are assumed to accumulate over a wide region extending laterally from the gate edge toward the drain contact, whereas, under the OFF-state stress, trap generation is supposed to take place in a narrower portion of the drain-access region close to the gate edge and to be accompanied by a significant degradation of the channel transport parameters. Channel hot electrons and electric-field-induced strain-enhancement are finally suggested to play major roles in power-state and off-state degradation, respectively. • Traps are characterized in AlGaN-GaN HEMTs by means of DLTS techniques and the associated charge/discharge behavior is interpreted with the aid of numerical device simulations. Under specific bias conditions, buffer traps can produce ‘‘false’’ surface-trap signals, i.e. the same type of current-mode DLTS (I DLTS) or gate-lag signals that are generally attributed to surface traps. Clarifying this aspect is important for both reliability testing and device optimization, as it can lead to erroneous identification of the degradation mechanism, thus resulting in wrong correction actions on the technological process. • The physical mechanisms underlying RF current collapse effects in AlGaN-GaN high electron mobility transistors are studied by means of measurements and numerical device simulations. This work suggests the following conclusions: i) both surface and buffer traps can contribute to RF current collapse through a similar physical mechanism involving capture and emission of electrons tunneling from the gate; ii) surface passivation strongly mitigates RF current collapse by reducing the surface electric field and inhibiting electron injection into traps; iii) for surface-trap densities lower than 9 × 1012 cm-2, surface-potential barriers in the 1–2 eV range can coexist with surface traps having much a shallower energy and, therefore, inducing RF current-collapse effects characterized by relatively short time constants. • Current collapse effects are investigated in AlGaN/GaN HEMTs by means of measurements and numerical device simulations. According to pulsed measurements, the adopted devices exhibit a significant gate-lag and a negligible drain-lag ascribed to the presence of surface and buffer traps, respectively. Furthermore, illumination of the devices with two specific wavelengths can result in either a recovering of current collapse or a decrease in the gate current. On the other hand, numerical device simulations suggest that the kink effect can be explained by electron trapping into barrier traps and the subsequent electron emission after a critical electric-field value is reached.Questa tesi riporta i risultati ottenuti da un’ampia analisi dei meccanismi fisici che limitano le prestazioni e l’affidabilità dei transistor ad alta mobilità di elettroni (HEMT) al nitruro di gallio (GaN). In particolare: • I fenomeni di degradazione ad alto campo elettrico nei GaN/AlGaN/GaN HEMT sono analizzati confrontando i dati sperimentali con i risultati delle simulazioni numeriche. Sono stati effettuati stress DC di 150 ore in condizioni di canale aperto e chiuso. Gli effetti di degradazione che hanno caratterizzato entrambi i tipi di stress sono i seguenti: una caduta nella corrente DC di drain, un’amplificazione degli effetti di gate lag, e una diminuzione della corrente inversa di gate. Le simulazioni numeriche indicano che la generazione simultanea di trappole in superficie (e/o barriera) e buffer può spiegare tutti i suddetti modi di degradazione. Le misure sperimentali hanno mostrato inoltre che lo stress a canale aperto ha causato una caduta della tranconduttanza solo ad alte tensioni VGS, mentre lo stress a canale chiuso ha provocato una caduta della transconduttanza uniforme a tutte le tensioni VGS. Questo comportamento può essere riprodotto con le simulazioni se, nel caso di stress a canale aperto, si assume che le trappole si accumulano lungo un’ampia regione che si estende lateralmente dal bordo di gate verso il contatto di drain, mentre, nel caso di stress a canale chiuso, si suppone che la generazione delle trappole abbia luogo in una più stretta porzione della zona di accesso vicino al bordo di gate e che sia accompagnata da una degradazione significativa dei parametri di trasporto del canale. Infine si propone che gli elettroni caldi del canale e l’aumento di strain indotto dal campo elettrico siano alla base delle degradazioni osservate dopo gli stress a canale aperto e chiuso rispettivamente. • Le trappole in AlGaN-GaN HEMTs sono caratterizzate usando le tecniche di DLTS e il relativo comportamento di carica/scarica é interpretato con l’aiuto delle simulazioni numeriche. Sotto particolari condizioni di polarizzazione, le trappole di buffer possono produrre falsi segnali da trappole di superficie, ossia lo stesso tipo di segnali I-DLTS e forma d’onda di gate lag attribuiti generalmente alle trappole di superficie. Chiarire questo aspetto è molto importante sia per le prove di affidabilità che per l’ottimizzazione dei dispositivi, in quanto può provocare una errata identificazione del meccanismo di degradazione, portando ad azioni correttive sbagliate nell’ottimizzazione del processo tecnologico. • I meccanismi fisici che originano il collasso di corrente RF negli HEMT AlGaN-GaN sono analizzati usando misure sperimentali e simulazioni numeriche. Questo lavoro suggerisce le seguenti condizioni: i) sia le trappole di superficie che quelle di buffer possono contribuire al collasso di corrente RF tramite un simile meccanismo fisico che coinvolge la cattura e l’emissione di elettroni provenienti dal gate; ii) la passivazione della superficie diminuisce fortemente il collasso della corrente RF tramite la riduzione del campo elettrico in superficie e la conseguente diminuzione dell’iniezione di elettroni dal gate alle trappole; iii) per densità di trappole di superficie minori di 9 × 1012 cm-2 , barriere di potenziale superficiale di 1-2 eV possono coesistere con trappole di superficie aventi energie relativamente basse e che provocano effetti di collasso di corrente RF caratterizzati da costanti di tempo relativamente corte. • Gli effetti di collasso di corrente negli HEMT AlGaN-GaN sono studiati usando i risultati delle misure sperimentali e delle simulazioni numeriche. Basandosi sulle misure delle caratteristiche d’uscita impulsate, i dispositivi utilizzati mostrano un evidente gate-lag e un trascurabile drain-lag, attribuiti alla presenza di trappole di superficie e buffer rispettivamente

    Analyse des mécanismes physiques qui limitent les performances et la fiabilité des HEMTs sur GaN

    No full text
    Ce manuscrit présente les résultats d une analyse exhaustive des mécanismes physiques qui limitent les performances et la fiabilité des transistors à haute mobilité d électrons (HEMT) sur nitrure de gallium (GaN). En particulier : Les phénomènes de dégradation à fort champ électrique des HEMT sur GaN sont analysés en comparant les données expérimentales avec les résultats de simulations physiques. Des stresses DC de 150 heures ont e te effectués en conditions de canal ouvert et de pincement. Les effets des dégradations qui ont caractérisé ces deux types de stresses sont les suivants: une chute de courant DC de drain, une amplification des effets de gate-lag, et une diminution du courant inverse de grille. Les simulations physiques indiquent que la génération simultanée de piéges de surface (et/ou barrière) et de volume peut expliquer tous les modes de dégradation décrits plus haut. Les mesures expérimentales ont également montré que le stress en canal ouvert a causé une chute de la transconductance seulement pour de fortes valeurs de la tension VGS, alors que le stress au pincement a provoqué une chute de transconductance uniforme pour toutes les valeurs de VGS. Ce comportement peut être reproduit par la simulation physique pourvu que, dans le cas de stress a canal ouvert, on considère que les piéges s accumulent au long d une vaste région qui s étend latéralement du bord de la grille vers le contact de drain, tandis que, dans le cas du stress au pincement, on considère que la génération des pièges ait lieu dans une portion plus petite de la zone d accès à proximité de la grille et qu elle soit accompagnée par une grande dégradation des paramètres de transport du canal. Enfin on propose que les électrons chauds et l augmentation de la contrainte par le champ électrique soient à l origine des dégradations observées après les stresses a canal ouvert et au pincement respectivement. Les piéges dans les HEMT sur GaN ont été caractérisés en utilisant les techniques de DLTS et leur comportement associé de charge/décharge est interprété à l aide des simulations physiques. Sous certaines conditions de polarisation, les piéges du buffer peuvent produire de faux signaux de piéges de surface, c'est-à-dire, le même type de signaux I-DLTS et ICTS attribués généralement aux piéges de surface. Clarifier cet aspect est très important à la fois pour les tests de fiabilité et pour l optimisation des dispositifs, car il peut provoquer une identification erronée du mécanisme de dégradation, et par conséquent induire une mauvaise correction des procédés technologiques. Les mécanismes physiques qui provoquent l effondrement du courant RF dans les HEMT sur GaN sont analysés par le biais de mesures expérimentales et de simulations physiques. Ce travail propose les conditions suivantes : i) les piéges du buffer aussi bien que ceux de surface peuvent contribuer à l effondrement du courant RF à travers un mécanisme identique qui impliquerait la capture et l émission des électrons provenant de la grille; ii) la passivation de la surface diminue considérablement l effondrement du courant RF par la réduction du champ électrique en surface et la diminution qui en découle de l injection d électrons de la grille vers les pièges ; iii) pour des densités de piéges de surface inférieures à 9 . 1012 cm-2 , des barrières de potentiel superficiels dans l ordre de 1-2 eV peuvent coexister avec des piéges de surface ayant des énergies plus faibles et qui causent l effondrement du courant RF caractérisé par des constantes de temps relativement courtes. Les effets de l effondrement du courant dans les HEMT sur GaN sont étudiés en utilisant les résultats de mesures expérimentales et de simulations physiques. D après les mesures pulsées, les dispositifs employés montrent un gate-lag considérable et un drain-lag négligeable qui peuvent être attribués à la présence de piéges de surface et de buffer respectivement.This thesis reports the results of an extensive analysis of the physical mechanisms that limit the performance and reliability of gallium nitride (GaN) based High Electron Mobility Transistors (HEMT). In particular: High electric field degradation phenomena are investigated in GaN-capped AlGaN/GaN HEMTs by comparing experimental data with numerical device simulations. Under power- and OFF-state conditions, 150-h DC stresses were carried out. Degradation effects characterizing both stress experiments were as follows: a drop in the dc drain current, the amplification of gate-lag effects, and a decrease in the reverse gate leakage current. Numerical simulations indicate that the simultaneous generation of surface (and/or barrier) and buffer traps can account for all of the aforementioned degradation modes. Experiments also showed that the power-state stress induced a drop in the transconductance at high gate source voltages only, whereas the OFF-state stress led to a uniform transconductance drop over the entire gate-source-voltage range. This behavior can be reproduced by simulations provided that, under the power-state stress, traps are assumed to accumulate over a wide region extending laterally from the gate edge toward the drain contact, whereas, under the OFF-state stress, trap generation is supposed to take place in a narrower portion of the drain-access region close to the gate edge and to be accompanied by a significant degradation of the channel transport parameters. Channel hot electrons and electric-field-induced strain-enhancement are finally suggested to play major roles in power-state and off-state degradation, respectively. Traps are characterized in AlGaN-GaN HEMTs by means of DLTS techniques and the associated charge/discharge behavior is interpreted with the aid of numerical device simulations. Under specific bias conditions, buffer traps can produce false surface-trap signals, i.e. the same type of current-mode DLTS (I DLTS) or gate-lag signals that are generally attributed to surface traps. Clarifying this aspect is important for both reliability testing and device optimization, as it can lead to erroneous identification of the degradation mechanism, thus resulting in wrong correction actions on the technological process. The physical mechanisms underlying RF current collapse effects in AlGaN-GaN high electron mobility transistors are studied by means of measurements and numerical device simulations. This work suggests the following conclusions: i) both surface and buffer traps can contribute to RF current collapse through a similar physical mechanism involving capture and emission of electrons tunneling from the gate; ii) surface passivation strongly mitigates RF current collapse by reducing the surface electric field and inhibiting electron injection into traps; iii) for surface-trap densities lower than 9 . 1012 cm-2, surface-potential barriers in the 1 2 eV range can coexist with surface traps having much a shallower energy and, therefore, inducing RF current-collapse effects characterized by relatively short time constants. Current collapse effects are investigated in AlGaN/GaN HEMTs by means of measurements and numerical device simulations. According to pulsed measurements, the adopted devices exhibit a significant gate-lag and a negligible drain-lag ascribed to the presence of surface and buffer traps, respectively. Furthermore, illumination of the devices with two specific wavelengths can result in either a recovering of current collapse or a decrease in the gate current. On the other hand, numerical device simulations suggest that the kink effect can be explained by electron trapping into barrier traps and the subsequent electron emission after a critical electric-field value is reached.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    Pairwise quantum correlations in four-level quantum dot systems

    No full text
    International audienceIn this paper we assume quantum dots can be assimilated to Fermi Hubbard sites when the Coulomb interaction between electrons is higher compared to their tunneling. The study of pairwise entanglement in a small size array of quantum dots allows to model each pair as a quadrit-quadrit system (4 × 4 mixed state) instead of the more common and simplistic approach of describing it in quantum information as a qubit-qubit system. We study the effect of Coulomb interaction and temperature on pairwise entanglement as well as on quantum coherence and total correlations. The crucial results of this study are that entanglement resists better the increase in temperature when the Coulomb interaction is stronger. Moreover, we successfully explain the behavior of these correlations in terms of the energy spectrum, namely the ground state degeneracy and the state energy difference

    Aerodynamic Optimization of Trailing-Edge-Serrations for a Wind Turbine Blade Using Taguchi Modified Additive Model

    No full text
    For the rotor, achieving relatively high aerodynamic performance in specific wind conditions is a long-term goal. Inspired by the remarkable flight characteristics of owls, an optimal trailing edge serration design is investigated and proposed for a wind turbine rotor blade. Fluid flow interaction with the proposed serrations is explored for different wind conditions. The result is supported by subsequent validation with three-dimensional numerical tools. The present work employs a statistical-numerical method to predict and optimize the shape of the serrations for maximum aerodynamic improvement. The optimal combination is found using the Taguchi method with three factors: Amplitude, wavelength, and serration thickness. The viability of the solution on an application is assessed using the Weibull distribution of wind in three selected regions. Results show that the presence of serration is capable of improving the annual power generation in all the investigated cities by up to 12%. The rated speed is also shifted from 10 m/s to 8 m/s for most configurations. Additionally, all configurations show similar trends for the instantaneous torque, where an increase is observed in pre-rated speed, whereas a decrease is noticed in the post-rated speed region. A look at the flow field pattern for the optimal design in comparison with the clean blade shows that the modified blade is able to generate more lift in the pre-stall region, while for the post-stall region, early separation and increased wake dominate the flow

    Investigation of High-Electric-Field Degradation Effects in AlGaN/GaN HEMTs

    No full text
    High-electric-field degradation phenomena are investigated in GaN-capped AlGaN-GaN HEMTs by comparing experimental data with numerical device simulations. 150-hour DC stresses were carried out under power-state and off-state conditions. Degradations effects characterizing both stress experiments were: a drop in the DC drain current, the amplification of gate-lag effects, and a decrease in the reverse gate leakage current. Numerical simulations indicate that the simultaneous generation of surface (and/or barrier) traps and of buffer traps can account for all of the above degradation modes. Experiments showed also that the power-state stress induced a drop in the transconductance at high gate-source voltages only, whereas the off-state stress led to a uniform transconductance drop over the entire gate-source-voltage range. This behavior can be reproduced by simulations provided that, under power-state stress, traps are assumed to accumulate over a wide region extending laterally from the gate edge towards the drain contact, whereas, under off-state stress, trap generation is supposed to take place in a narrower portion of the drain access region close to the gate edge and to be accompanied by a significant degradation of the channel transport parameters

    Investigation of High-Electric-Field Degradation Effects in AlGaN/GaN HEMTs

    No full text

    Reduction of self-heating effects in GaN HEMT via h-BN passivation and lift-off transfer to diamond substrate: A simulation study

    No full text
    International audienceIn this article, we investigate through numerical simulation the reduction of self-heating effects (SHEs) in GaN HEMT via the integration of hexagonal boron nitride (h-BN) as a passivation layer and as a release layer to transfer GaN HEMT to diamond substrate. The obtained devices exhibit improved thermal performance compared to SiO2/GaN/sapphire HEMT. The lattice temperature was reduced from 507 K in SiO2/GaN/sapphire to 372 K in h-BN/GaN/diamond HEMT. The temperature decrease enhances the drain current and transconductance to 900 mA/mm and 250 mS/mm, corresponding to a 47 % improvement. In addition, the total thermal resistance Rth is reduced by a factor of 5 from 27 K mm/W in GaN/sapphire HEMT to 5.5 K mm/W in GaN/diamond HEMT. This study indicates that h-BN integration in GaN HEMT as a top heat spreader and a release layer for transfer to diamond substrate can be a promising solution to reduce self-heating effects and extend the device lifetime and reliability
    corecore