85 research outputs found

    Altérations mitochondriales et processus inflammatoire dans la déficience en acyl- Coenzyme A oxydase 1 peroxysomale

    Get PDF
    L acyl-CoA oxydase 1 (ACOX1) est l enzyme qui catalyse la première étape de la voie classique de la b-oxydation peroxysomale. Cette voie catabolise exclusivement les acides gras à très longue chaîne (AGTLC). Chez l homme, la déficience en ACOX1 est à l origine de la pseudo adrénoleucodystrophie néonatale (P-NALD), une maladie neurodégénérative rare caractérisée par une accumulation des AGTLC dans le plasma et les tissus, une hépatomégalie, un retard du développement moteur et une démyélinisation de la matière blanche cérébrale. Chez la souris, l extinction du gène Acox1 provoque une accumulation des AGTLC dans le plasma, un retard de croissance, une stéatose hépatique et le développement d une hépatocarcinogenèse avec l âge. Cependant, ces souris ne développent pas de symptômes cérébraux contrairement aux patients P NALD. Au cours de ce travail, on a pu montrer sur des fibroblastes issus de patients atteints de P NALD qu en absence d activité ACOX1, les peroxysomes sont diminués en nombre et augmentés en taille avec un niveau de b-oxydation peroxysomale fortement réduit. L accumulation des AGTLC suite à la déficience en ACOX1 dans ces cellules provoque, au niveau transcriptionnel, la perturbation de la voie de synthèse du cholestérol et déclenche une réaction inflammatoire caractérisée par l activation de la voie de l IL-1 et la sécrétion d IL-6 et d IL-8. Le rôle métabolique important que joue l ACOX1 dans l homéostasie énergétique cellulaire a pu être souligné chez l homme et chez la souris. En effet, la déficience en ACOX1 dans les fibroblastes de patients P-NALD perturbe la morphologie de la mitochondrie qui apparaît anormale ainsi que le métabolisme énergétique mitochondrial caractérisé par une inhibition de PGC-1a par acétylation, une surexpression de l activité du complexe V et une diminution du taux d ATP mitochondrial. L absence dans le foie de l activité ACOX1, chez la souris Acox1-/-, se traduit par des perturbations, au niveau mitochondrial, dela biogenèse et du métabolisme énergétique. Ces perturbations mitochondriales se caractérisent par une diminution de l activité du complexe IV de la chaîne respiratoire accompagnée d une diminution de la respiration. Cependant, ces perturbations n affectent pas le taux d ATP total. Les altérations mitochondriales observées chez les souris Acox1-/- sont en grande partie corrigées par l expression de l ACOX1 humaine. Ceci montre le rôle indispensable de l ACOX1 dans l homéostasie de la fonction mitochondriale.L ensemble des résultats obtenus au cours de ce travail confirme l importance de l activité acyl-CoA oxydase 1 pour la dégradation des AGTLC au niveau du système de b-oxydation peroxysomale et pour la biogenèse du peroxysome. L accumulation des substrats non métabolisés en absence d ACOX1 pourrait être à l origine de la perturbation de la fonction mitochondriale montrant à quel point l activité de l ACOX1 est indispensable au métabolisme cellulaireAcyl-CoA oxidase 1 (ACOX1) is the rate-limiting enzyme of the peroxisomal fatty acid b-oxidation pathway of very-long-chain fatty acid (VLCFAs). In humans, ACOX1 deficiency, also called pseudo-neonatal adrenoleukodystrophy, is an autosomal recessive and a severe form of the peroxisomal b-oxidation deficiency. Patients suffer from severe delayed motor development followed by a progressive neurological regression including progressive hypodensity of cerebral white matter, hepatomegaly and deafness and die during late-infantile period. Elevated plasma and tissues VLCFAs levels are detected in these patients. Mice lacking ACOX1 develop severe microvesicular steatohepatitis with increased intrahepatic H2O2 levels and hepatocellular regeneration. Liver cell proliferation in Acox1-/- mice leads to complete replacement of steatotic hepatocytes with hepatocytes that exhibit massive spontaneous peroxisome proliferation. Older mice develop hepatocellular carcinomas due to the sustained activation of peroxisome proliferator-activated receptor-alpha (PPARa). Contrary to humans, mice lacking ACOX1 have no apparent neurological disorder. Based on fibroblasts cell model from P-NALD patients, we show that ACOX1 deficiency lead to abolition of peroxysomal b-oxidation of cerotic acid (C26:0) and modification of peroxysomal morphology which appear reduced in number and enlarged in size. Moreover, accumulation of VLCFAs in ACOX1 deficiency in human fibroblasts interferes at the transcription level with cholesterol synthesis pathway. Furthermore, these cells show activation of interleukin-1b pathway with elevated production of interleukin-6 and interleukin-8 as an inflammatory response to metabolic disturbance due to VLCFAs accumulation. Furthermore, we show in this study that the ACOX1 deficiency in human fibroblasts and in mice liver leads to alteration of the mitochondrial ultra structure, changes in the expression and activity of mitochondrial chain complexes. These alterations of mitochondrial functions are accompanied by reduction in mitochondrial ATP levels in human fibroblasts and decreased mitochondrial respiration in ACOX1 deficient mice. Interestingly, the mitochondrial changes observed in Acox1-/- mice are restored by expression of human ACOX1 in liver suggesting an essential role of human and murine Acyl-CoA oxidase 1 activity in preventing mitochondrial and lipid disturbance.Together, the results presented in this work underscore the important role of ACOX1 in humans and mice to ensure peroxisomal b-oxidation, VLCFAs catabolism and to preserve peroxisomal morphology. Given mitochondrial perturbation in ACOX1 deficiency, it is clear that this enzyme plays a pivotal role in preventing VLCFAs accumulation and their cellular toxicity and guarantees mitochondrial normal morphology and function in response to energy demandDIJON-BU Doc.électronique (212319901) / SudocSudocFranceF

    Hibernation impact on the catalytic activities of the mitochondrial D-3-hydroxybutyrate dehydrogenase in liver and brain tissues of jerboa (Jaculus orientalis)

    Get PDF
    BACKGROUND: Jerboa (Jaculus orientalis) is a deep hibernating rodent native to subdesert highlands. During hibernation, a high level of ketone bodies i.e. acetoacetate (AcAc) and D-3-hydroxybutyrate (BOH) are produced in liver, which are used in brain as energetic fuel. These compounds are bioconverted by mitochondrial D-3-hydroxybutyrate dehydrogenase (BDH) E.C. 1.1.1.30. Here we report, the function and the expression of BDH in terms of catalytic activities, kinetic parameters, levels of protein and mRNA in both tissues i.e brain and liver, in relation to the hibernating process. RESULTS: We found that: 1/ In euthemic jerboa the specific activity in liver is 2.4- and 6.4- fold higher than in brain, respectively for AcAc reduction and for BOH oxidation. The same differences were found in the hibernation state. 2/ In euthermic jerboa, the Michaelis constants, K(M )BOH and K(M )NAD(+ )are different in liver and in brain while K(M )AcAc, K(M )NADH and the dissociation constants, K(D )NAD(+)and K(D )NADH are similar. 3/ During prehibernating state, as compared to euthermic state, the liver BDH activity is reduced by half, while kinetic constants are strongly increased except K(D )NAD(+). 4/ During hibernating state, BDH activity is significantly enhanced, moreover, kinetic constants (K(M )and K(D)) are strongly modified as compared to the euthermic state; i.e. K(D )NAD(+ )in liver and K(M )AcAc in brain decrease 5 and 3 times respectively, while K(D )NADH in brain strongly increases up to 5.6 fold. 5/ Both protein content and mRNA level of BDH remain unchanged during the cold adaptation process. CONCLUSIONS: These results cumulatively explained and are consistent with the existence of two BDH enzymatic forms in the liver and the brain. The apoenzyme would be subjected to differential conformational folding depending on the hibernation state. This regulation could be a result of either post-translational modifications and/or a modification of the mitochondrial membrane state, taking into account that BDH activity is phospholipid-dependent

    Base moléculaire des effets de l'huile d'argan sur le métabolisme mitochondrial et peroxysomal des acides gras et sur l'inflammation

    Get PDF
    L objectif des travaux de cette thèse a été d explorer les bases moléculaires de l effet de l huile d Argan (HA) sur le métabolisme lipidique au niveau mitochondriale et peroxysomale ainsi qu élucider son potentiel anti-inflammatoire. Nous avons donc montré, dans un premier temps, que les méthodes artisanales préservaient les propriétés antioxydantes d HA empêchant l oxydation de l acide férulique contrairement à l HA d origines commerciale. Ensuite, le traitement par l HA ou par les lipopolysaccharides (LPS) de fibroblastes humains, un modèle cellulaire de la pseudo-adrénoleucodystrophie néonatale (P-NALD), révèle pour l HA une prolifération des peroxysomes indépendante de l activation du récepteur nucléaire PPARa et de son coactivateur PGC-1a. Par contre, l induction de la prolifération de peroxysomes par les LPS est accompagnée d une activation de PPAR et de PGC-1 Parallèlement, une étude a été réalisée au niveau hépatique chez des souris traitées par l HA ou par les LPS. Nous avons montré pour la première fois l activité antioxydante de l huile d Argan in vivo au niveau hépatique par l induction de l activité enzymatique de la catalase peroxysomale et une activité hypolipémiante par la stimulation des activités déshydrogénases (ACADs) de la -oxydations mitochondriale des acides gars. De plus, l HA induit la transcription des gènes PPECK et G6PH de la voie de la néoglucogenèse. Nous avons montré également pour la première fois un effet préventif de l HA contre la répression des activités déshydrogénases des voies de -oxydations mitochondriale et peroxysomale, ainsi que celle la voie de la néoglucogenèse. Nos travaux démontrent que l HA possède un potentiel anti-inflammatoire, induit par le LPS, élucidé par la répression de cytokines pro-inflammatoires IL-6 et TNFa et par l induction de cytokines anti-inflammatoires IL10 et IL-4. L ensemble de nos résultats indiquerait que l huile d Argan, du fait de sa composition riche en acide gras mono et polyinsaturés et en antioxydants, a des effets hypolipémiants et anti-inflammatoires au niveau hépatique qui se traduisent par une régulation de l expression à la fois de récepteurs nucléaires et de leur gènes cibles ainsi que de certaines cytokinesThe objective of this thesis work was to explore the molecular basis of Argan Oil (AO) effects on the mitochondrial and peroxisomal lipid metabolism and to elucidate its anti-inflammatory potential. We thus showed, initially, that the artisanal method preparation preserved the antioxidant properties of AO preventing the oxidation of the ferulic acid, by contrast to AO of commercial origin. Then, the treatment by the AO or lipopolysaccharides (LPS) of human fibroblasts, the cellular model of pseudo-neonatal adrenoleukodystrophy (P-NALD), revealed for the AO that peroxisomes proliferation is independent from the activation of the nuclear receptor PPARa and the co-activator PGC-1a. On the other side, the induction of the proliferation of peroxisomes by LPS is accompanied by an activation of both PPARa and PGC-1a. At the same time, mice treatments by AO or by the LPS showed, for the first time, the hepatic antioxidant activity of AO through the induction of the activity of the peroxisomal catalase. In addition, we showed a hypolipidemic activity of AO, by the stimulation of dehydrogenase activities (ACADs) of the mitochondrial fatty acid b-oxidation. Moreover, the AO induces the transcription of genes involved in gluconeogenesis pathway (i.e. PEPCK and G6PH). We also revealed, for the first time, the preventive effect of AO against LPS repressions of mitochondrial and peroxisomal fatty acid degradation as well as on the gluconeogenic pathway. Furthermore, the AO anti-inflammatory potential has been shown, in mice treated by LPS, through the repression of the pro-inflammatory cytokines IL-6 and TNFa and by the induction of the anti-inflammatory cytokines IL10 and IL-4. All together, our results may indicate that the Argan oil, because of its composition rich in mono and polyunsaturated fatty acids and in antioxidants as well, has a hypolipidemic and an anti-inflammatory effects, which are revealed by the regulation of the expressions of nuclear receptors and their target genes including several cytokinesDIJON-BU Doc.électronique (212319901) / SudocSudocFranceF

    NFY interacts with the promoter region of two genes involved in the rat peroxisomal fatty acid β-oxidation: the multifunctional protein type 1 and the 3-ketoacyl-CoA B thiolase

    Get PDF
    BACKGROUND: β-oxidation of long and very long chain fatty acyl-CoA derivatives occurs in peroxisomes, which are ubiquitous subcellular organelles of eukaryotic cells. This pathway releases acetyl-CoA as precursor for several key molecules such as cholesterol. Numerous enzymes participating to cholesterol and fatty acids biosynthesis pathways are co-localized in peroxisomes and some of their encoding genes are known as targets of the NFY transcriptional regulator. However, until now no interaction between NFY transcription factor and genes encoding peroxisomal β-oxidation has been reported. RESULTS: This work studied the interactions between NFY factor with the rat gene promoters of two enzymes of the fatty acid β-oxidation, MFP-1 (multifunctional protein type 1) and ThB (thiolase B) and their involvement in the cholesterol dependent-gene regulation. Binding of this nuclear factor to the ATTGG motif of the MFP-1 and of the ThB promoters was demonstrated by EMSA (Electrophoretic Mobility Shift Assay) and super shift assay. In contrast, in spite of the presence of putative Sp1 binding sites in these promoters, competitive EMSA did not reveal any binding. The promoter-dependent luciferase gene expression was downregulated by cholesterol in MFP-1 and ThB promoters harbouring constructs. CONCLUSIONS: This work describes for the first time a NFY interaction with promoter sequences of the peroxisomal β-oxidation encoding genes. It suggests that cholesterol would negatively regulate the expression of genes involved in β-oxidation, which generates the initial precursor for its own biosynthesis, via at least the NFY transcription factor

    Growth inhibition of cultured cancer cells by Ribes nigrum leaf extract

    Get PDF
    The present article includes data on the possible selective cytotoxic effect of extract of Ribes nigrum L. growing at high Armenian landscape. For this purpose, different non-cancer (microglial BV-2 wild type (Wt), acyl-CoA oxidase 1 (ACOX1) deficient (Acox1−/−) and cancer (human colon adenocarcinoma HT29 and human breast cancer MCF7) cell lines were applied. R. nigrum leaf ethanol extract showed a growth inhibition effect towards HT29 and MCF7 cells started from 6 h of treatment at the concentration of 0.5 mg/mL DW. The lowest concentration (0.125 mg/mL DW) of the investigated extract expressed cytotoxicity after 72 hours following cancer cell treatment. In contrast to the cancer cells, in the case of the tested non-cancer cells, cytotoxic effect was not observed at the applied concentrations. The extract sub-cytotoxic concentration, in this case, was reported to be the 1 mg/mL DW. Further investigations are needed to confirm the selective cytotoxicity and possible action mechanisms of the leaf extract of R. nigrum

    Cytoprotective and Antioxidants in Peroxisomal Neurodegenerative Diseases

    Get PDF
    Several of the peroxisomal neurodegenerative disorders are the consequence of a specific deficiency of an enzyme or a transporter involved in peroxisomal beta-oxidation of very long chain fatty acids [1,2]. One of the hallmarks in these peroxisomal rare neurodegenerative diseases and in other common demyelinating disorders is the accompanying oxidative damage and neuroinflammation [3]. Compelling data indicates that oxidative stress can activate microglia leading to the overproduction of pro-inflammatory molecules [4,5]. Thus, targeting oxidative stress to limit neuroinflammation may open a new pharmacological therapy window for these still incurable devastating peroxisomal diseases. Here, we present different natural (resveratrol) [6] and synthetic (organoselenides) [7] antioxidant compounds for their capacity of scavenging oxidative stress and in the perspective therapeutic use against oxidative damage in peroxisomal disorders

    Involvement of KCa3.1 channel activity in immediate perioperative cognitive and neuroinflammatory outcomes.

    Full text link
    peer reviewed[en] BACKGROUND: Potassium channels (KCa3.1; Kv1.3; Kir2.1) are necessary for microglial activation, a pivotal requirement for the development of Perioperative Neurocognitive Disorders (PNDs). We previously reported on the role of microglial Kv1.3 for PNDs; the present study sought to determine whether inhibiting KCa3.1 channel activity affects neuroinflammation and prevents development of PND. METHODS: Mice (wild-type [WT] and KCa3.1-/-) underwent aseptic tibial fracture trauma under isoflurane anesthesia or received anesthesia alone. WT mice received either TRAM34 (a specific KCa3.1 channel inhibitor) dissolved in its vehicle (miglyol) or miglyol alone. Spatial memory was assessed in the Y-maze paradigm 6 h post-surgery/anesthesia. Circulating interleukin-6 (IL-6) and high mobility group box-1 protein (HMGB1) were assessed by ELISA, and microglial activitation Iba-1 staining. RESULTS: In WT mice surgery induced significant cognitive decline in the Y-maze test, p = 0.019), microgliosis (p = 0.001), and increases in plasma IL-6 (p = 0.002) and HMGB1 (p = 0.001) when compared to anesthesia alone. TRAM34 administration attenuated the surgery-induced changes in cognition, microglial activation, and HMGB1 but not circulating IL-6 levels. In KCa3.1-/- mice surgery neither affected cognition nor microgliosis, although circulating IL-6 levels did increase (p < 0.001). CONCLUSION: Similar to our earlier report with Kv1.3, perioperative microglial KCa3.1 blockade decreases immediate perioperative cognitive changes, microgliosis as well as the peripheral trauma marker HMGB1 although surgery-induced IL-6 elevation was unchanged. Future research should address whether a synergistic interaction exists between blockade of Kv1.3 and KCa3.1 for preventing PNDs

    Microgliosis: a double-edged sword in the control of food intake

    Get PDF
    Maintaining energy balance is essential for survival and health. This physiological function is controlled by the brain, which adapts food intake to energy needs. Indeed, the brain constantly receives a multitude of biological signals that are derived from digested foods or that originate from the gastrointestinal tract, energy stores (liver and adipose tissues) and other metabolically active organs (muscles). These signals, which include circulating nutrients, hormones and neuronal inputs from the periphery, collectively provide information on the overall energy status of the body. In the brain, several neuronal populations can specifically detect these signals. Nutrient-sensing neurons are found in discrete brain areas and are highly enriched in the hypothalamus. In turn, specialized brain circuits coordinate homeostatic responses acting mainly on appetite, peripheral metabolism, activity and arousal. Accumulating evidence shows that hypothalamic microglial cells located at the vicinity of these circuits can influence the brain control of energy balance. However, microglial cells could have opposite effects on energy balance, that is homeostatic or detrimental, and the conditions for this shift are not totally understood yet. One hypothesis relies on the extent of microglial activation, and nutritional lipids can considerably change it

    Peroxisomal defects in microglial cells induce a disease-associated microglial signature

    Get PDF
    Microglial cells ensure essential roles in brain homeostasis. In pathological condition, microglia adopt a common signature, called disease-associated microglial (DAM) signature, characterized by the loss of homeostatic genes and the induction of disease-associated genes. In X-linked adrenoleukodystrophy (X-ALD), the most common peroxisomal disease, microglial defect has been shown to precede myelin degradation and may actively contribute to the neurodegenerative process. We previously established BV-2 microglial cell models bearing mutations in peroxisomal genes that recapitulate some of the hallmarks of the peroxisomal β-oxidation defects such as very long-chain fatty acid (VLCFA) accumulation. In these cell lines, we used RNA-sequencing and identified large-scale reprogramming for genes involved in lipid metabolism, immune response, cell signaling, lysosome and autophagy, as well as a DAM-like signature. We highlighted cholesterol accumulation in plasma membranes and observed autophagy patterns in the cell mutants. We confirmed the upregulation or downregulation at the protein level for a few selected genes that mostly corroborated our observations and clearly demonstrated increased expression and secretion of DAM proteins in the BV-2 mutant cells. In conclusion, the peroxisomal defects in microglial cells not only impact on VLCFA metabolism but also force microglial cells to adopt a pathological phenotype likely representing a key contributor to the pathogenesis of peroxisomal disorders
    corecore