812 research outputs found

    Measuring the Factors Influencing the Consumers’ Attitude on Selecting International Beauty Soaps: An Investigation in Bangladesh Market

    Get PDF
    In the age of globalization, companies are trying to capture customers’ value for its successive growth as well as its sustainability not only in national market but also in international market so that they (customers) come in return. Moreover, companies are communicating and delivering ‘value proposition’ to the customers. As a result, manufacturers have to focus on ‘unique selling proposition’ i.e. focus on one or more factors, which is the basis for strategy formulation (Kotler and Keller,2005,  p. 56), to ensure customers’ benefit as well as profitable customer relationship with company. In this paper, attempt has been made to identify some common factors, which influence customers to choose beautification items, especially for beauty soap products in Bangladesh market. Moreover, Fishbein’s Multiattribute Attitude Model (FMAM), has been used to measure overall attitude of each soap product in same market. Furthermore, it can be observed that customers in Bangladesh, basically give emphasize on some common factors (six) for their buying decision, such as: price, relaxation, brand reputation, all natural ingredients, smell, and good health, which are the main  factors to analyze this paper.  In addition, it can be seen that customers specially focus on price, which is the sought after result of this study through Principal Components Analysis (PCA). Keywords: Value Proposition, Unique Selling Proposition, Multiattribute Attitude Model (MAM), Brand Reputation, Principal Components Analysis (PCA), Rotated Factors

    Vector meson spectral function and dilepton production rate in a hot and dense medium within an effective QCD approach

    Get PDF
    The properties of the vector meson current-current correlation function and its spectral representation are investigated in details with and without isoscalar-vector interaction within the framework of effective QCD approach, namely Nambu-Jona-Lasinio (NJL) model and its Polyakov Loop extended version (PNJL), at finite temperature and finite density. The influence of the isoscalarvector interaction on the vector meson correlator is obtained using the ring resummation known as the Random Phase Approximation (RPA). The spectral as well as the correlation function in PNJL model show that the vector meson retains its bound property up to a moderate value of temperature above the phase transition. Using the vector meson spectral function we, for the first time, obtained the dilepton production rate from a hot and dense medium within the framework of PNJL model that takes into account the nonperturbative effect through the Polyakov Loop fields. The dilepton production rate in PNJL model is enhanced compared to NJL and Born rate in the deconfined phase due to the suppression of color degrees of freedom at moderate temperature. The presence of isoscalar-vector interaction further enhances the dileption rate over the Born rate in the low mass region. Further, we also have computed the Euclidean correlation function in vector channel and the conserved density fluctuation associated with temporal correlation function appropriate for a hot and dense medium. The dilepton rate and the Euclidean correlator are also compared with available lattice data and those quantities in PNJL model are found to agree well in certain domain.Comment: 30 pages, 16 figures, typos corrected, references added, to appear in JHE

    The use of Surface Enhanced Raman Spectroscopy (SERS) for biomedical applications

    Get PDF
    Recent advances in nanotechnology and the biotechnology revolution have created an immense opportunity for the use of noble metal nanoparticles as Surface Enhanced Raman Spectroscopy (SERS) substrates for biological sensing and diagnostics. This is because SERS enhances the intensity of the Raman scattered signal from an analyte by orders of 106 or more. This dissertation deals with the different aspects involved in the application of SERS for biosensing. It discusses initial studies performed using traditional chemically reduced silver colloidal nanoparticles for the SERS detection of a myriad of proteins and nucleic acids. It examines ways to circumvent the inherent aggregation problems associated with colloidal nanoparticles that frequently lead to poor data reproducibility. The different methods examined to create robust SERS substrates include the creation of thermally evaporated silver island films on microscope glass slides, using the technique of Nanosphere Lithography (NSL) to create hexagonally close packed periodic particle arrays of silver nanoparticles on glass substrates as well as the use of optically tunable gold nanoshell films on glass substrates. The three different types of SERS surfaces are characterized using UV-Vis absorption spectroscopy, Electron Microscopy (EM), Atomic Force Microscopy (AFM) as well as SERS using the model Raman active molecule trans-1,2-bis(4-pyridyl)ethylene (BPE). Also discussed is ongoing work in the initial stages of the development of a SERS based biosensor using gold nanoshell films for the direct detection of b-amyloid, the causative agent for Alzheimer's disease. Lastly, the use of gold nanoshells as SERS substrates for the intracellular detection of various biomolecules within mouse fibroblast cells in cell culture is discussed. The dissertation puts into perspective how this study can represent the first steps in the development of a robust gold nanoshell based SERS biosensor that can improve the ability to monitor biological processes in real time, thus providing new avenues for designing systems for the early diagnosis of diseases

    A Case of Persistent Asthma Resistant to Available Treatment Options: Management Dilemma

    Get PDF
    Asthma affects nearly 300 million people worldwide, with 250,000 associated deaths annually. An estimated 5%-10% of patients have severe asthma, while only 1%-2% presented with treatment-resistant or refractory asthma. Currently, the endotype of asthma is divided into T-helper type 2 (Th2) high and Th2-low inflammation endotypes. The Th2-high endotype is characterized by eosinophilic asthma, while the Th2-low endotype is associated with neutrophilia and a pauci-granulocytic profile. The Th2-low endotype carries a high resistance to corticosteroid and bronchodilator therapy, and these patients typically have a severe and acute-onset of symptoms. We present a 57-year-old nonsmoking female with recurrent intensive care unit (ICU) admissions for severe acute asthma exacerbations, resistant to bronchodilator and steroid treatment, requiring mechanical ventilation. Currently, the guidelines for treating neutrophil-predominant Th2-low inflammation asthma have not been established. This creates a management dilemma when encountered with such a patient in clinical practice. We aim to propose targeted treatment options for these severe and potentially fatal asthma patients, with reference to current literature

    Effect of zeolite topology and reactor configuration on the direct conversion of CO2 to light olefins and aromatics

    Get PDF
    The direct transformation of CO2 into high-value-added hydrocarbons (i.e., olefins and aromatics) has the potential to make a decisive impact in our society. However, despite the efforts of the scientific community, no direct synthetic route exists today to synthesize olefins and aromatics from CO2 with high productivities and low undesired CO selectivity. Herein, we report the combination of a series of catalysts comprising potassium superoxide doped iron oxide and a highly acidic zeolite (ZSM-5 and MOR) that directly convert CO2 to either light olefins (in MOR) or aromatics (in ZSM-5) with high space–time yields (STYC2-C4= = 11.4 mmol·g–1·h–1; STYAROM = 9.2 mmol·g–1·h–1) at CO selectivities as low as 12.8% and a CO2 conversion of 49.8% (reaction conditions: T = 375 °C, P = 30 bar, H2/CO2 = 3, and 5000 mL·g–1·h–1). Comprehensive solid-state nuclear magnetic resonance characterization of the zeolite component reveals that the key for the low CO selectivity is the formation of surface formate species on the zeolite framework. The remarkable difference in selectivity between the two zeolites is further rationalized by first-principles simulations, which show a difference in reactivity for crucial carbenium ion intermediates in MOR and ZSM-5

    Tunable Room Temperature THz Sources Based on Nonlinear Mixing in a Hybrid Optical and THz Micro-Ring Resonator

    Get PDF
    We propose and systematically investigate a novel tunable, compact room temperature terahertz (THz) source based on difference frequency generation in a hybrid optical and THz micro-ring resonator. We describe detailed design steps of the source capable of generating THz wave in 0.5–10 THz with a tunability resolution of 0.05 THz by using high second order optical susceptibility (x(2)) in crystals and polymers. In order to enhance THz generation compared to bulk nonlinear material, we employ a nonlinear optical micro-ring resonator with high-Q resonant modes for infrared input waves. Another ring oscillator with the same outer radius underneath the nonlinear ring with an insulation of SiO2 layer supports the generated THz with resonant modes and out-couples them into a THz waveguide. The phase matching condition is satisfied by engineering both the optical and THz resonators with appropriate effective indices. We analytically estimate THz output power of the device by using practical values of susceptibility in available crystals and polymers. The proposed source can enable tunable, compact THz emitters, on-chip integrated spectrometers, inspire a broader use of THz sources and motivate many important potential THz applications in different fields

    The consequences of SU(3) colorsingletness, Polyakov Loop and Z(3) symmetry on a quark-gluon gas

    Full text link
    Based on quantum statistical mechanics we show that the SU(3)SU(3) color singlet ensemble of a quark-gluon gas exhibits a Z(3)Z(3) symmetry through the normaized character in fundamental representation and also becomes equivalent, within a stationary point approximation, to the ensemble given by Polyakov Loop. Also Polyakov Loop gauge potential is obtained by considering spatial gluons along with the invariant Haar measure at each space point. The probability of the normalized character in SU(3)SU(3) vis-a-vis Polyakov Loop is found to be maximum at a particular value exhibiting a strong color correlation. This clearly indicates a transition from a color correlated to uncorrelated phase or vise-versa. When quarks are included to the gauge fields, a metastable state appears in the temperature range 145≤T(MeV)≤170145\le T({\rm{MeV}}) \le 170 due to the explicit Z(3)Z(3) symmetry breaking in the quark-gluon system. Beyond T≥170T\ge 170 MeV the metastable state disappears and stable domains appear. At low temperature a dynamical recombination of ionized Z(3)Z(3) color charges to a color singlet Z(3)Z(3) confined phase is evident along with a confining background that originates due to circulation of two virtual spatial gluons but with conjugate Z(3)Z(3) phases in a closed loop. We also discuss other possible consequences of the center domains in the color deconfined phase at high temperature.Comment: Version published in J. Phys.
    • …
    corecore