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Abstract: The properties of the vector meson current-current correlation function and

its spectral representation are investigated in details with and without isoscalar-vector in-

teraction within the framework of effective QCD approach, namely Nambu-Jona-Lasinio

(NJL) model and its Polyakov Loop extended version (PNJL), at finite temperature and

finite density. The influence of the isoscalar-vector interaction on the vector meson corre-

lator is obtained using the ring resummation known as the Random Phase Approximation

(RPA). The spectral as well as the correlation function in PNJL model show that the

vector meson retains its bound property up to a moderate value of temperature above

the phase transition. Using the vector meson spectral function we, for the first time, ob-

tained the dilepton production rate from a hot and dense medium within the framework

of PNJL model that takes into account the nonperturbative effect through the Polyakov

Loop fields. The dilepton production rate in PNJL model is enhanced compared to NJL

and Born rate in the deconfined phase due to the suppression of color degrees of freedom at

moderate temperature. The presence of isoscalar-vector interaction further enhances the

dileption rate over the Born rate in the low mass region. Further, we also have computed

the Euclidean correlation function in vector channel and the conserved density fluctuation

associated with temporal correlation function appropriate for a hot and dense medium.

The dilepton rate and the Euclidean correlator are also compared with available lattice

data and those quantities in PNJL model are found to agree well in certain domain.
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1 Introduction

Quantum Chromodynamics (QCD) being the fundamental theory of strong interaction ex-

hibits a very rich phase structure at extreme conditions, i.e., high temperature and/or

high density. It is now well established that at these conditions a transition from normal

hadronic matter to a state of strongly interacting exotic quark gluon plasma (QGP) is

possible [1, 2]. In recent years, a tremendous effort has been devoted to the creation of

QGP in the laboratory. The heavy-ion collider experiments presently dedicated to this

search are the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Labora-

tory (BNL) [3–6] and the Large Hadron Collider (LHC) at the European Organization

for Nuclear Research (CERN) [7, 8]. Also, future fixed target experiments are planned
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at the Facility for Antiproton and Ion Research (FAIR) at the Gesellschaft für Schwerio-

nenforschung (GSI) [9]. In all these experiments heavy ions are accelerated to relativistic

speeds in order to achieve such extreme conditions required for the creation of a short-

lived QGP. Various diagnostic measurements at RHIC BNL [10–18] in the recent past have

indicated a strong hint for the creation of a semi-QGP (not weakly interacting like usual

QGP) within a first few fm/c of the collisions through the manifestation of hadronic final

states. Also, new data from LHC CERN [19–23] have further consolidated the formation

of such a state of matter.

One of the most interesting as well as promising subjects in the area of theoretical high

energy physics is the study of the strongly interacting many particle system under these

extreme conditions. Dynamical properties of many particle system are associated with the

correlation function [24–26]. We know that many of the hadron properties are embedded

in the correlation function and its spectral representation. Such properties in vacuum [27]

are very well studied in QCD. The presence of a stable mesonic state is understood by the

delta function like peak in the spectral function. At low temperature most of the hadronic

models [28, 29] work well but break down near the phase transition temperature, Tc. While

propagating through the hot and dense medium [30, 31], the vacuum properties of any

particle get modified due to the change of its dispersion properties in the medium. The

temporal correlation function is related to the response of the conserved density fluctuations

due to the symmetry of the system. On the other hand, the spatial correlation function

exhibits information on the masses and width. So, in a hot and dense medium the properties

of hadrons, viz., response to the fluctuations, masses, width, compressibility etc., will be

affected. Hence, hadron properties at finite temperature and density are also encoded

in the structure of its correlation function and the corresponding spectral representation,

which may reflect the degrees of freedom around the phase transition point and thus the

properties of the deconfined, strongly interacting matter. As for example, the spectral

representation of the vector current-current correlation can be indirectly accessible by high

energy heavy-ion experiments as it is related to the differential thermal cross section for

the production of lepton pairs [30, 31]. Moreover, in the limit of small frequencies, various

transport coefficients of the hot and dense medium can be determined from the spatial

spectral representation of the vector channel correlation [30, 31]. The static limit of the

temporal correlation function provides the response to the fluctuation of the conserved

quantities. For a quasiparticle in the medium, the δ-like peak is expected to be smeared

due to the thermal width, which increases with the increase in temperature. At sufficiently

high temperature and density, the contribution from the mesonic state in the spectral

function will be broad enough so that it is not very meaningful to speak of it as a well

defined state any more [32–34].

At high temperature but zero chemical potential, the structure of the vector meson

correlation function, determination of thermal dilepton rate and various transport coeffi-

cients have been studied using Lattice QCD (LQCD) framework at zero momentum [35–43]

and also at nonzero momentum [44], which is a first principle calculation that takes into

account the nonperturbative effects of QCD. Such studies for hot and dense medium are

also performed within perturbative techniques like Hard Thermal Loop (HTL) approxima-
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tion [45–58], and in dimensional reduction [59, 60] appropriate for weakly interacting QGP.

Nevertheless, at RHIC and LHC energies the maximum temperature reached is not very

far from the phase transition temperature Tc and a hot and dense matter created in these

collisions is nonperturbative in nature (semi-QGP). So, most of the perturbative methods

may not be applicable in this temperature domain but these methods, however, are very

reliable and accurate at very high temperature [61–64] for usual weakly interacting QGP. In

effective QCD model framework [32, 33, 65–69], several studies have also been done in this

direction. Mesonic spectral functions and the Euclidean correlator in scalar, pseudoscalar

and vector channel have been discussed in refs. [65–69] using Nambu-Jona-Lasinio (NJL)

model. The NJL model has no information related to the confinement and thus does not

have any nonperturbative effect associated with the semi-QGP above Tc. However, the

Polyakov Loop extended NJL (PNJL) model [70, 71] contains nonperturbative informa-

tion through Polyakov Loop [72–79] that suppresses the color degrees of freedom as the

Polyakov Loop expectation value decreases when T → T+
c . The thermodynamic proper-

ties of strongly interacting matter have been studied extensively within the framework of

NJL and PNJL models [80–84]. The properties of the mesonic correlation functions have

also been studied in scalar and pseudoscalar channel using PNJL model in refs. [85, 86].

We intend to study, for the first time in PNJL model, the properties of the vector cor-

relation function and its spectral representation to understand the nonperturbative effect

on the spectral properties, e.g., the dilepton production rate and the conserved density

fluctuations, in a hot and dense matter created in heavy-ion collisions.

Further, the low temperature and high density part of the phase diagram is still less

explored compared to the high temperature one. At finite densities the effect of chirally

symmetric vector channel interaction becomes important and it is established that within

the NJL or PNJL model this type of interaction weakens the first order transition line [87–

92] in contrary to the scalar coupling which tends to favor the appearance of first order

phase transitions. It is important to mention here that the determination of the strength of

vector coupling constant is crucial under model formalism. It cannot be fixed using vector

meson mass as it is beyond the characteristic energy cut-off of the model. However, at

the same time incorporation of vector interaction is important if one intends to study the

various spectral properties of the system at non-zero chemical potential [68, 93] appropriate

for FAIR scenario [9]. In the present work, we study the nonperturbative effect of Polyakov

Loop, along with the presence as well as the absence of the repulsive isoscalar-vector

interaction, on the spectral function, correlation function and various spectral properties,

(e.g., the rate of dilepton production, fluctuation of conserved charges) in a hot and dense

matter. The influence of this repulsive vector channel interaction on the correlator and

its spectral representation has been obtained using ring resummation. The results are

compared with NJL model and the available lattice QCD (LQCD) data.

The paper is organized as follows: in section 2 we will briefly outline some of the

generalities related to the correlation function and its spectral representation, and their

relations to various physical quantities we would like to study. In section 3 we briefly sketch

the effective models namely NJL and PNJL model. In section 4 we obtain the vector

correlation function and its spectral properties through the isoscalar-vector interaction
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within the ring resummation both in vacuum as well as in a hot and dense medium. We

present our findings relevant for a hot and dense medium in section 5 and finally, conclude

in section 6.

2 Some generalities

2.1 Correlation function and its spectral representation

In general the correlation function in coordinate space is given by

GAB(t, ~x) ≡ T (Â(t, ~x)B̂(0,~0)) =

∫

dω

2π

∫

d3q

(2π)3
eiωt−i~q·~x GAB(ω, ~q), (2.1)

where T is the time-ordered product of the two operators Â and B̂, and the four momentum

Q ≡ (ω, ~q) with q = |~q|.
By taking the Fourier transformation one can obtain the momentum space correlation

function as

GAB(ω, ~q) =

∫

dt

∫

d3~x GAB(t, ~x) e−iωt+i~q·~x . (2.2)

The thermal meson current-current correlator in Euclidean time τ ∈ [0, β = 1/T ] is given

as [45, 94]

GE
M (τ, ~x) = 〈T (JM (τ, ~x)J†

M (0,~0))〉β = T

∞
∑

n=−∞

∫

d3q

(2π)3
e−i(ωnτ+~q·~x) GE

M (iωn, ~q), (2.3)

where the mesonic current is defined as JM = ψ̄(τ, ~x)ΓMψ(τ, ~x), with ΓM =1, γ5, γµ, γµγ5
for scalar, pseudoscalar, vector and pseudovector channel respectively. The momentum

space correlator GE
M (iωn, ~q) at the discrete Matsubara modes ωn = 2πnT can be obtained as

GE
M (iωn, ~q) = −

∫ ∞

−∞

dω
σM (ω, ~q)

iωn − ω
. (2.4)

The spectral function σH(ω, ~q) for a given mesonic channel H, can be obtained from

the imaginary part of the momentum space Euclidean correlator in (2.4) by analytic con-

tinuation as

σH(ω, ~q) =
1

π
Im GE

H(iωn = ω + iǫ, ~q), (2.5)

where H = 00, ii and V stand for temporal, spatial and vector spectral function, re-

spectively. The vector spectral function is expressed in terms of temporal and spatial

components as σV = σ00 − σii.

Using (2.3) and (2.4) one obtains the spectral representation of the thermal correlation

function in Euclidean time but at a fixed momentum ~q as

GE
H(τ, ~q) =

∫ ∞

0
dω σH(ω, ~q)

cosh[ω(τ − β/2)]

sinh[ωβ/2]
. (2.6)
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Because of the difficulty in analytic continuation in LQCD the spectral function can not

be obtained directly using (2.5). Instead a calculation in LQCD proceeds by evaluating

the Euclidean correlation function. Using a probabilistic application based on maximum

entropy method (MEM) [95–97], (2.6) is then inverted to extract the spectral function and

thus various spectral properties are computed in LQCD.

2.2 Vector spectral function and dilepton rate

The vector meson spectral function, σV , and the differential dilepton production rate are

related as [45]
dR

d4xd4Q
=

5α2

54π2
1

M2

1

eω/T − 1
σV (ω, ~q) , (2.7)

where the invariant mass of the lepton pair is M2 = ω2 − q2 and α is the fine structure

constant.

2.3 Temporal Euclidean correlation function and response to conserved den-

sity fluctuation

The quark number susceptibility (QNS), χq measures of the response of the quark number

density ρ with infinitesimal change in the quark chemical potential, µ + δµ and is related

to temporal correlation function through fluctuation dissipation theorem [68] as

χq(T ) =
∂ρ

∂µ

∣

∣

∣

∣

µ=0

=

∫

d4x
〈

J0(0, ~x)J0(0,~0)
〉

= lim
~q→0

β

∫

dω

2π

−2

1− e−ω/T
ImG00(ω, ~q) = −lim

~q→0
Re G00(ω = 0, ~q), (2.8)

where Kramers-Kronig dispersion relation has also been used.

The quark number conservation implies that lim~q→0ImG00(ω, ~q) ∝ δ(ω) and the tem-

poral spectral function in (2.5) becomes

σ00(ω,~0) =
1

π
ImG00(ω,~0) = −ωδ(ω)χq(T ). (2.9)

The relation of the Euclidean temporal correlation function and the response to the fluc-

tuation of conserved number density, χq, can be obtained from (2.6) as

GE
00(τT ) = −Tχq(T ), (2.10)

which is independent of the Euclidean time, τ , but depends on T .

3 Effective QCD models

3.1 NJL model

In the present work we consider 2 flavor NJL model with vector channel interaction. The

corresponding Lagrangian is [27, 68, 98–100]:

LNJL = ψ̄(iγµ∂
µ −m0)ψ +

GS

2
[(ψ̄ψ)2 + (ψ̄iγ5~τψ)

2]− GV

2
(ψ̄γµψ)

2, (3.1)
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where, m0 =diag(mu,md) with mu = md and ~τ ’s are Pauli matrices. GS and GV are the

coupling constants of local scalar type four-quark interaction and isoscalar-vector interac-

tion respectively.

The scalar four quark interaction term leads to the formation of chiral condensate

σ = 〈ψ̄ψ〉. The condensate resulting from the additional vector coupling term only contains

the time like component and the corresponding condensate is n = 〈ψ̄γ0ψ〉 [88, 100]. The

thermodynamic potential in mean field approximation is given as:

ΩNJL =
GS

2
σ2 − GV

2
n2 − 2NfNc

∫

Λ

d3p

(2π)3
Ep

−2NfNcT

∫

d3p

(2π)3

[

ln(1 + e−(Ep−µ̃)/T ) + ln(1 + e−(Ep+µ̃)/T )
]

. (3.2)

Here Ep =
√

~p2 +M2
f is the energy of a quark with flavor f having constituent mass

or the dynamical mass Mf and Λ is a finite three momentum cut-off. The thermodynamic

potential depends on the dynamical fermion mass Mf and the modified quark chemical

potential µ̃ which are related to the scalar (σ) and vector (n) condensates through the

relations

Mf = m0 −GSσ, (3.3)

and

µ̃ = µ−GV n, (3.4)

respectively.

3.2 PNJL model

Let us now briefly discuss PNJL model [80–84, 90], where, unlike NJL model we have a

couple of more mean fields in the form of the expectation value of the Polyakov Loop fields1

Φ and its conjugate Φ̄. The Lagrangian for the 2 flavor PNJL model with vector channel

interaction is given by,

LPNJL = ψ̄(i /D −m0 + γ0µ)ψ +
GS

2
[(ψ̄ψ)2 + (ψ̄iγ5~τψ)

2]− GV

2
(ψ̄γµψ)

2

−U(Φ[A], Φ̄[A], T ), (3.5)

1We recall that the Polyakov Loop expectation value Φ acts as an order parameter [72–79] for pure

SU(Nc) gauge theory. Given the role of an order parameter, if Φ(Φ̄) = 0 the center symmetry Z(Nc) of

SU(Nc) is unbroken and there is no ionization of Z(Nc) charge, which is the confined phase below a certain

temperature. At high temperature the Z(Nc) symmetry is spontaneously broken, Φ(Φ̄) 6= 0 corresponds

to a deconfined phase of gluonic plasma and there are Nc different equilibrium states distinguished by the

phase 2πj/Nc with j = 0, · · · (Nc − 1). We also note that the Z(Nc) symmetry is explicitly broken in

presence of dynamical quark, yet it can be considered as an approximate symmetry and Φ can still provide

useful information as an order parameter [101].
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a0 a1 a2 a3 b3 b4 κ

6.75 -1.95 2.625 -7.44 0.75 7.5 0.1

Table 1. Parameter set used in this work for the Polyakov Loop potential and the Vander

Monde term.

where Dµ = ∂µ − igAµ
aλa/2, Aµ

a being the SU(3) background fields and λa’s are the Gell-

Mann matrices. The thermodynamic potential can be obtained as [80–83]

ΩPNJL = U(Φ, Φ̄, T ) + GS

2
σ2 − GV

2
n2

−2NfT

∫

d3p

(2π)3
ln
[

1 + 3
(

Φ+ Φ̄e−(Ep−µ̃)/T
)

e−(Ep−µ̃)/T + e−3(Ep−µ̃)/T
]

−2NfT

∫

d3p

(2π)3
ln
[

1 + 3
(

Φ̄ + Φe−(Ep+µ̃)/T
)

e−(Ep+µ̃)/T + e−3(Ep+µ̃)/T
]

−κT 4 ln[J(Φ, Φ̄)]− 2NfNc

∫

Λ

d3p

(2π)3
Ep . (3.6)

The effective Polyakov Loop gauge potential is parametrized as

U(Φ, Φ̄, T )
T 4

= −b2(T )
2

ΦΦ̄− b3
6
(Φ3 + Φ̄3) +

b4
4
(Φ̄Φ)2, (3.7)

with

b2(T ) = a0 + a1

(

T0
T

)

+ a2

(

T0
T

)2

+ a3

(

T0
T

)3

.

Values of different coefficients a0, a1, a2, a3, b3 , b4 and κ have been tabulated [82, 85]

in table 1. The Vandermonde determinant J(Φ, Φ̄) is given as [82, 101]

J [Φ, Φ̄] =
27

24π2

[

1− 6ΦΦ̄ + 4(Φ3 + Φ̄3)− 3(ΦΦ̄)
2
]

. (3.8)

We also note that the mass gap in (3.3) and the modified chemical potential in (3.4) will

now have dependence on Φ and Φ̄ through σ and n.

4 Vector meson correlator in ring resummation

We intend here to consider the isoscalar-vector interaction. Generally, from the structure

of the interaction one can write the full vector channel correlation function by a geometric

progression of one-loop irreducible amplitudes [27]. In the present form of our model

Lagrangian with effective coupling GV , the Dyson-Schwinger equation (DSE) for the vector

correlator Cµν within the ring approximation as shown in figure 1 reads as

Cµν = Πµν +GV ΠµσC
σ
ν , (4.1)

where Πµν is one loop vector correlator.
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=
C+Π ΠC Gv

Figure 1. Vector correlator in ring resummation.

4.1 Ring resummation at zero temperature and chemical potential

The general properties of a vector correlation function at vacuum:

Πµν(Q
2) =

(

gµν −
QµQν

Q2

)

Π(Q2), (4.2)

Cµν(Q
2) =

(

gµν −
QµQν

Q2

)

C(Q2), (4.3)

where Π(Q2) and C(Q2) are scalar quantities with Q ≡ (q0, ~q), is the four momentum.

Using (4.2) and (4.3), (4.1) can be reduced to a scalar DSE as

C = Π+GV ΠC

C =
Π

1−GV Π
(4.4)

The general structure of a vector correlator in vacuum becomes

Cµν =
Π

1−GV Π

(

gµν −
QµQν

Q2

)

. (4.5)

Using (4.5) the spectral representation in vacuum can be obtained from (2.5). The vacuum

properties of vector meson can be studied using this spectral function [27] but we are

interested in those at finite temperature and density appropriate for hot and dense medium

formed in heavy-ion collisions and the vacuum, as we will see later, is in-built therein. Below

we briefly outline how the vector correlation function and its spectral properties will be

modified in a hot and dense medium.

4.2 Ring resummation at finite temperature and chemical potential

The general structure of one-loop and resummed vector correlation function in the medium

(T and µ 6= 0) can be decomposed [30, 31, 102] as:

Πµν(Q
2) = ΠT (Q

2)P T
µν +ΠL(Q

2)PL
µν , (4.6)

Cµν(Q
2) = CT (Q

2)P T
µν + CL(Q

2)PL
µν , (4.7)

where ΠL(T ) and CL(T ) are the respective scalar parts of Πµν and Cµν . P
L(T )
µν are longi-

tudinal (transverse) projection operators with their well defined properties in the medium

and can be chosen as [102],

PL
µν =

Q2

Q̃2
ŪµŪν , P T

µν = ηµν − UµUν −
Q̃µQ̃ν

Q̃2
. (4.8)
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Here Uµ is the proper four velocity which in the rest frame of the heat bath has the form

Uµ = (1, 0, 0, 0). Q̃µ = (Qµ − ωUµ) is the four momentum orthogonal to Uµ whereas

Ūµ = (Uµ−ωQµ/Q
2) is orthogonal component of Uµ’s with respect to the four momentum

Qµ. Also, the respective scalar parts, ΠL(T ), of Πµν are obtained as

ΠL = −Q
2

q2
Π00; ΠT =

1

(D − 2)

[

ω2

q2
Π00 −Πii

]

, (4.9)

where D, is the space-time dimension of the theory.

Using (4.6) and (4.7) in (4.1) one obtains

CT (Q
2)P T

µν + CL(Q
2)PL

µν = [ΠT +GV ΠTCT ]P
T
µν + [ΠL +GV ΠLCL]P

L
µν . (4.10)

Now, the comparison of coefficients on both sides leads to two scalar DSEs: One, for

transverse mode, reads as

CT =
ΠT

1−GV ΠT
, (4.11)

and the other one, for the longitudinal mode, reads as:

CL =
ΠL

1−GV ΠL
(4.12)

Let us first write the temporal component of the resummed correlator: it is clear

from (4.8) that P T
00 = 0. So we have from (4.7)

C00 =
ΠL

1−GV ΠL
PL
00 =

Π00

1 +GV
Q2

q2
Π00

, (4.13)

and the imaginary part of the temporal component of C00 is obtained as

ImC00 =
ImΠ00

[

1−GV

(

1− ω2

q2

)

ReΠ00

]2
+
[

GV (1− ω2

q2
)ImΠ00

]2 . (4.14)

The spatial component of the resummed correlator (Cii) can be written as:

Cii = CTP
T
ii + CLP

L
ii =

ΠT

1−GV ΠT
P T
ii +

ΠL

1−GV ΠL
PL
ii . (4.15)

Using (4.11) and (4.12), it becomes for D = 4

Cii =
Πii − ω2

q2
Π00

1− GV

2

(

ω2

q2
Π00 −Πii

) +

ω2

q2
Π00

1 +GV

(

Q2

q2

)

Π00

= C ′
T + C ′

L. (4.16)

The imaginary part of the spatial vector correlator can be obtained as

ImCii = ImC ′
T + ImC ′

L. (4.17)
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where

ImC ′
T =

ImΠii − ω2

q2
ImΠ00

[

1 + GV

2 ReΠii − GV

2
ω2

q2
ReΠ00

]2
+

G2
V

4

[

ImΠii − ω2

q2
ImΠ00

]2 , (4.18)

and,

ImC ′
L =

ω2

q2
ImΠ00

[

1−GV

(

1− ω2

q2

)

ReΠ00

]2
+
[

GV

(

1− ω2

q2

)

ImΠ00

]2 =
ω2

q2
ImC00. (4.19)

Folowing (2.5), the resummed vector spectral function

σV =
1

π

[

ImC00 − ImCii

]

. (4.20)

4.3 Conserved density fluctuation in ring approximation

Following (2.8) the response to the conserved density fluctuation, i.e., QNS, at finite T
and µ in ring approximation can be obtained in terms of the real part of the temporal
correlation function C00. The real part of C00 is obtained from (4.13) as

ReC00(ω, ~q)=
ReΠ00(ω, ~q)+GV

(

ω2

q2
−1
)

[

(ReΠ00(ω, ~q))
2+(ImΠ00(ω, ~q))

2
]

1+2GV

(

ω2

q2
−1
)

ReΠ00(ω, ~q)+
(

GV

(

ω2

q2
−1
))2 [

(ReΠ00(ω, ~q))2+(ImΠ00(ω, ~q))2
]

.

(4.21)

Now the resummed QNS in ring approximation becomes

χR
q (T, µ̃) = − lim

~q→0
ReC00(0, ~q) =

χq(T, µ̃)

1 +GV χq(T, µ̃)
, (4.22)

where we note that lim~q→0 ImΠ00(0, ~q) = 0 and one-loop χq(T, µ̃) = − lim~q→0ReΠ00(0, ~q).

Now, we note that at GV = 0, all the resummed quantities in ring approximation

become equivalent to those of one-loop. To compute all resummed quantities, we just need

to compute one-loop vector self-energy within the effective models considered here.

4.4 Vector correlation function in one-loop

The current-current correlator in vector channel at one-loop level (refer figure 2) can be

written as

Πµν(Q) =

∫

d4P

(2π)4
TrD,c [γµS(P +Q)γνS(P )] , (4.23)

where TrD,c is trace over Dirac and color indices, respectively. We would like to compute

this in effective models, viz., in NJL and PNJL model.

The NJL quark propagator in Hartree approximation is given as

SNJL(L) =
[

/L−m0 + γ0µ̃+GSσ
]−1

=
[

/L−Mf + γ0µ̃
]−1

, (4.24)

whereas for PNJL it reads as

SPNJL(L) =
[

/L−Mf + γ0µ̃− iγ0A4

]−1
(4.25)
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Figure 2. Vector channel correlator at one-loop.

where the four momentum, L ≡ (l0,~l ). The gap equation for constituent quark mass

Mf and the modified quark chemical potential µ̃ due to vector coupling GV are given,

respectively, in (3.3) and (3.4). Now in contrast to NJL one, the presence of background

temporal gauge field A4 will make a connection to the Polyakov Loop field Φ [72–79]. While

performing the frequency sum and color trace in (4.23), the thermal distribution function

in PNJL case will be different from that of NJL one.

For convenience, we will calculate the one-loop vector correlation in NJL model. This

NJL correlation function, as discussed, can easily be generalized to PNJL one by replacing

the thermal distribution function2 as

f(Ep ± µ̃) =
Φe−β(Ep±µ̃) + 2Φ̄e−2β(Ep±µ̃) + e−3β(Ep±µ̃)

1 + 3Φe−β(Ep±µ̃) + 3Φ̄e−2β(Ep±µ̃) + e−3β(Ep±µ̃)
, (4.26)

which at Φ(Φ̄) = 1 reduces to the thermal distribution for NJL or free as the cases may

be. On the other hand for Φ(Φ̄) = 0, the effect of confinement is clearly evident in which

three quarks are stacked in a same momentum and color state [101].

4.4.1 Temporal part

The time-time component of the vector correlator in (4.23) reads as

Π00(Q) =

∫

d4P

(2π)4
Tr[γ0S(K)γ0S(P )], (4.27)

where K = P +Q. After some mathematical simplifications we are left with

Π00(ω, ~q) = NcNf

∫

d3p

(2π)3
1

EpEk

{

EpEk +M2
f + ~p · ~k

ω + Ep − Ek

× [f(Ep − µ̃) + f(Ep + µ̃)− f(Ek − µ̃)− f(Ek + µ̃)]

+
(

EpEk −M2
f − ~p · ~k

)

[

1

ω − Ep − Ek
− 1

ω + Ep + Ek

]

× [1− f(Ep + µ̃)− f(Ek − µ̃)]

}

. (4.28)

2For details we refer to refs. [84, 85].
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The real and imaginary parts of the temporal vector correlator are, respectively, ob-

tained as

ReΠ00(ω, ~q) = P

[

NfNc

∫

d3p

(2π)3
1

EpEk

{

EpEk +M2
f + ~p · ~k

ω + Ep − Ek

× [f(Ep − µ̃) + f(Ep + µ̃)− f(Ek − µ̃)− f(Ek + µ̃)]

+(EpEk −M2
f − ~p · ~k)

(

1

ω − Ep − Ek
− 1

ω + Ep + Ek

)

× [1− f(Ep + µ̃)− f(Ek − µ̃)]

}]

, (4.29)

as P stands for principal value, and

ImΠ00(ω, ~q) = lim
η→0

1

2i

[

Π00(ω → ω + iη, q)−Π00(ω → ω − iη, q)
]

= −πNfNc

∫

d3p

(2π)3
1

EpEk

{

(EpEk +M2
f + ~p · ~k)

× [f(Ep − µ̃) + f(Ep + µ̃)− f(Ek − µ̃)− f(Ek + µ̃)]× δ(ω + Ep − Ek)

+(EpEk −M2
f − ~p · ~k) [1− f(Ep + µ̃)− f(Ek − µ̃)]

×[δ(ω − Ep − Ek)]

}

. (4.30)

It is now worthwhile to check some known results in the limit ~q → 0 and µ̃ = 0, (4.30) can

be written as:

ImΠ00(ω) = −πNfNc

∫

d3p

(2π)3
1

E2
p

(

3E2
p − 3M2

f − p2
) (

2f ′(Ep)
)

(−ωδ (ω)) , (4.31)

and which, in the limit Mf = m0 −GSσ = 0, further becomes

ImΠ00(ω) = −2πT 2ωδ(ω). (4.32)

The vacuum part in (4.29) is now separated as

ReΠvac
00 (ω, ~q)=

NfNc

4π2

∫ Λ

0
p dp

1

2Epq

[

4pq + 6EpX− − 6EpX+ − Y− ln

∣

∣

∣

∣

Ep +X− − ω

Ep +X+ − ω

∣

∣

∣

∣

+Y+ ln
Ep +X+ + ω

Ep +X− + ω

]

, (4.33)

with Y± = (4E2
p ± 4Epω +M2), X± =

√

E2
p ± 2pq + q2 and M2 = ω2 − q2.

(4.34)

We note that the ultraviolet divergence in the vacuum part is regulated by using a finite

three momentum cut-off Λ. The corresponding matter part of (4.29) is obtained as

ReΠmat
00 (ω, ~q) =

NfNc

2π2

∫ ∞

0
p dp

[

f(Ep − µ̃) + f(Ep + µ̃)
]

[

ω

q
ln

∣

∣

∣

∣

∣

M2 − 4 (pq + ωEp)
2

M2 − 4 (pq − ωEp)
2

∣

∣

∣

∣

∣

−
(

4E2
p +M2

4qEp

)

ln

∣

∣

∣

∣

∣

(

M2 − 2pq
)2 − 4ω2E2

p

(M2 + 2pq)2 − 4ω2E2
p

∣

∣

∣

∣

∣

− 2p

Ep

]

. (4.35)
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The imaginary part in (4.30) can be simplified as

ImΠ00(ω, ~q) =
NfNc

4π

∫ p+

p
−

p dp
4ωEp − 4E2

p −M2

2Epq

[

f(Ep − µ̃) + f(Ep + µ̃)− 1
]

(4.36)

where the vacuum part does not require any momentum cut-off as the energy conserving

δ-function ensures the finiteness of the limits:

p± =
ω

2

√

1−
4M2

f

M2
± q

2
, (4.37)

with a threshold restricted by a step function, Θ(M2 − 4M2
f ).

4.4.2 Spatial part

The space-space component of the vector correlator in (4.23) reads as

Πii(Q) =

∫

d4P

(2π)4
Tr[γiS(K)γiS(P )], (4.38)

which can be simplified to

Πii(ω, ~q) = NcNf

∫

d3p

(2π)3
1

EpEk

{

3EpEk − 3M2
f − ~p · ~k

ω − Ep + Ek

× [f(Ek + µ̃) + f(Ek − µ̃)− f(Ep + µ̃)− f(Ep − µ̃)]

+
(

3EpEk + 3M2
f + ~p · ~k

)

[

1

ω − Ep − Ek
− 1

ω + Ep + Ek

]

× [1− f(Ek + µ̃)− f(Ep − µ̃)]

}

. (4.39)

In the similar way as before the imaginary part can be obtained

ImΠii(ω, ~q) = −πNfNc

∫

d3p

(2π)3
1

EpEk

{

(3EpEk − 3M2
f − ~p · ~k)

× [f(Ek + µ̃) + f(Ek − µ̃)− f(Ep + µ̃)− f(Ep − µ̃)] δ(ω + Ep − Ek)

+
(

3EpEk + 3M2
f + ~p · ~k

)

[1− f(Ek + µ̃)− f(Ep − µ̃)]

×δ(ω − Ep − Ek)

}

, (4.40)

whereas the real part can be obtained as

ReΠii(ω, ~q) = P

[

NfNc

∫

d3p

(2π)3
1

EpEk

{

3EpEk − 3M2
f − ~p · ~k

ω − Ep + Ek

× [f(Ek − µ̃) + f(Ek + µ̃)− f(Ep − µ̃)− f(Ep + µ̃)]

+(3EpEk + 3M2
f + ~p · ~k)

(

1

ω − Ep − Ek
− 1

ω + Ep + Ek

)

× [1− f(Ek + µ̃)− f(Ep − µ̃)]

}]

. (4.41)
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At this point we also check the known results in the limit ~q → 0 and µ̃ = 0, (4.40) can

be written as:

ImΠii(ω) = −πNfNc

∫

d3p

(2π)3
1

E2
p

(

3E2
p − 3M2

f − p2
) (

2f ′(Ep)
)

(−ωδ (ω))

− 3

2πω

√

ω2 − 4M2
f

(

ω2 + 2M2
f

)

tanh
( ω

4T

)

Θ(ω − 2Mf ), (4.42)

and when Mf = m0 −GSσ = 0, it becomes

ImΠii(ω) = −2πT 2ωδ(ω)− 3

2π
ω2 tanh

( ω

4T

)

. (4.43)

As seen both massive and massless cases show a sharp peak due to the delta function at

ω → 0, which leads to pinch singularity for calculation of transport coefficients.

Now, the vacuum part in (4.41) is simplified as

ReΠvac
ii (ω, ~q) =

NfNc

4π2

∫ Λ

0
p dp

1

2Epq

[

−4pq + 10Ep(X− −X+)− Z− ln

∣

∣

∣

∣

Ep +X− − ω

Ep +X+ − ω

∣

∣

∣

∣

+Z+ ln
Ep +X+ + ω

Ep +X− + ω

]

, (4.44)

where Z± = 4p2 ± 4Epω −M2. The corresponding matter part is obtained as

ReΠmat
ii (ω, ~q) =

NfNc

4π2

∫ ∞

0
p dp

[

f(Ep − µ̃) + f(Ep + µ̃)
]

[

2
ω

q
ln

∣

∣

∣

∣

M2 − 4(pq + Epω)
2

M2 − 4(pq − Epω)2

∣

∣

∣

∣

+

(

M2 − 4p2

2qEp

)

ln

∣

∣

∣

∣

∣

(

M2 − 2pq
)2 − 4ω2E2

p

(M2 + 2pq)2 − 4ω2E2
p

∣

∣

∣

∣

∣

+ 4
p

Ep

]

. (4.45)

Finally, the imaginary part in (4.40) is simplified as

ImΠii(ω, ~q) =
NfNc

4π

∫ p+

p
−

p dp
4ωEp − 4p2 +M2

2Epq
(f(Ep − µ̃) + f(Ep + µ̃)− 1) (4.46)

where the vacuum part does not need any finite momentum cut-off as stated above.

5 Results

5.1 Gap equations and mean fields

The thermodynamic potential Ω for both NJL and PNJL model is extremized with respect

to the mean fields X, i.e.,
∂Ω

∂X
= 0 (5.1)

where, X stands for σ and n for NJL model and Φ, Φ̄, σ and n for PNJL model. The value of

the parameters, GS = 10.08 GeV−2 and Λ = 0.651GeV were taken from literature [83] and

m0 = 0.005GeV. However, the value of GV is difficult to fix within the model formalism,

since this quantity should be fixed using the ρ meson mass which, in general, happens to be
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Figure 3. Variation of scaled constituent quark mass with zero temperature quark mass and

the Polyakov Loop fields (Φ and Φ̄) with temperature at chemical potential µ = 100MeV for (a)

GV /GS = 0 and (b) GV /GS = 0.5.

higher than the maximum energy scale Λ of the model. So, we consider the vector coupling

constant GV as a free parameter and different choices are considered as GV = x × GS ,

where x is chosen from 0 to 1 appropriately.

In figure 3 a comparison between the scaled quark mass with its zero temperature

value (Mf (T )/Mf (0)) in NJL and PNJL model is displayed as a function of temperature

T for two values of GV (= 0 and 0.5GS) with µ = 100MeV. It also contains a variation of

the Polyakov loop fields (Φ(T ) and Φ̄(T )) with T . In both models the scaled quark mass

decreases with increase in T and approaches the chiral limit at very high T . However,

in the temperature range 60 ≤ T (MeV) ≤ 300, the variation of the scaled quark mass is

slower in PNJL than that of NJL model. This slow variation is due to the presence of

the confinement effect in it through the Polyakov Loop fields (Φ(T ) and Φ̄(T )), as can be

seen that the Polyakov Loop field (Φ(T )) and its conjugate (Φ̄(T )) increase from zero in

confined phase and approaches unity (free state) at high temperature. Now, we note that

Φ = Φ̄ at µ = 0 as there is equal number of quarks and antiquarks. However, because of

non-zero chemical potential there is an asymmetry in quark and antiquark numbers, which

leads to an asymmetry in the Polyakov Loop fields Φ and Φ̄. This asymmetry disappears

for T > 300MeV, which is much greater than µ. We also note that the fields depend

weakly with the variation of the vector coupling GV akin to that of mass as displayed in

figure 4 for µ = 100MeV and GV /GS = 0 to 0.8.

In figure 5 the number density scaled with T 3 for both NJL and PNJL model is

displayed as a function of T with µ = 100MeV for two values of GV . At very high

temperature, as seen in figure 3, the Polyakov Loop fields Φ(Φ̄) → 1 and masses in both

models become same. So, PNJL model becomes equivalent to NJL model because the

thermal distribution function becomes equal as can be seen from (4.26) and thus the number

density. On the other hand, for temperature T < 400MeV and a given µ, the PNJL number

density is found to be suppressed than that of NJL case as the thermal distribution function

in (4.26) is suppressed. This is due to the combination of two complementary effects:
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Figure 4. Variation of constituent quark mass with temperature in (a) NJL and (b) PNJL model

for chemical potential µ = 100MeV and a set of values for vector coupling GV .
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Figure 5. Comparison of the scaled quark number density with T 3 as a function of T in NJL and

PNJL model with chemical potential µ = 100MeV for (a) GV /GS = 0 and (b) GV /GS = 0.5 .

(i) the nonperturbative effect through Φ and Φ̄ and (ii) the slower variation of mass in

PNJL model, which are clearly evident from figure 3. It is also obvious from figure 5(a)

and figure 5(b) that the presence of vector interaction GV reduces the number density

for both NJL and PNJL model, which could be understood due to the reduction of µ̃ as

given in (3.4).

5.2 Vector spectral function and dilepton rate

The vector spectral function is proportional to the imaginary part of the vector correlation

function as defined in (2.5) or (4.20). This imaginary part is restricted by, the energy

conservation, ω = Ep +Ek, as can be seen from (4.30) and (4.40). This equivalently leads

to a threshold, M2 ≥ 4M2
f , which can also be found from (4.37). Now for a given GV and

T , the resummed spectral function in (4.20) picks up continuous contribution above the
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Figure 6. Scaled vector spectral function σV /ω
2 as a function of scaled invariant mass, M/T ,

in NJL and PNJL model with external momentum q = 0, quark chemical potential µ = 0 and

GV /GS = 0 for (a) T = 200MeV and (b) T = 300MeV.

threshold, M2 > 4M2
f , which provides a finite width to a vector meson that decays into a

pair of leptons. However, below the threshold M2 < 4M2
f , the continuous contribution of

the spectral function in (4.20) becomes zero and the decay to dileptons are forbidden. But

if one analyses it below the threshold, one can find bound state contributions in spectral

functions. When imaginary part approaches zero, the spectral function in (4.20) becomes

discrete and can be written as:

σV (ω, ~q)
=

M<2Mf

1

π

[

δ
(

F1(ω, ~q)
)

]

,

where F1(ω, ~q) = 1 +
GV

2
ReΠii −

GV

2

ω2

q2
ReΠ00 = 0, (5.2)

where only the dominant contribution of (4.18) is considered. Using the properties of

δ-function, one can write

σV (ω, ~q)
=

M<2Mf

1

π

δ(ω − ω0)

|dF1(ω, ~q)/dω|ω=ω0

, (5.3)

which corresponds to a sharp δ-function peak at ω = ω0. However, we are interested here

in continuous contribution M > 2Mf , which are discussed below.

5.2.1 Without vector interaction (GV = 0)

With no vector interaction (GV = 0), the spectral function in (4.20) is solely determined

by the imaginary part of the one loop vector self energies Π00(ω, ~q) and Πii(ω, ~q). Fig-

ure 6 displays a comparison of vector spectral function with zero external momentum

(~q = 0, M = ω) in NJL and PNJL model for T = 200MeV and 300MeV, when there is

no vector interaction (GV = 0). Now, for T = 200MeV (left panel) the spectral function

in PNJL model has larger threshold than NJL model because the quark mass in PNJL

model is much larger than that of NJL one (see figure 3). Also the PNJL spectral function
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Figure 7. Scaled vector spectral function σV /ω
2 as a function of scaled invariant mass, M/T , in

NJL and PNJL model with external momentum q = 200MeV, quark chemical potential µ = 100

MeV and GV /GS = 0 for (a) T = 200MeV and (b) T = 300MeV.

dominates over that of NJL one, because of the presence of nonperturbative effects due

to Polyakov Loop fields Φ and Φ̄. At higher values of T (= 300 MeV) (right panel), the

threshold becomes almost same due to the reduction of mass effect in PNJL case whereas

the nonperturbative effects at low M/T still dominate. The reason is the following: at

zero external momentum and zero chemical potential the spectral function is proportional

to [1− 2f(Ep)] (apart from the mass dependent prefactor) as can be seen from the second

term of (4.42). In PNJL case the thermal distribution function, f(Ep), is more suppressed

due to the suppression of color degrees of freedom than NJL at moderate values of T , so

the weight factor [1 − 2f(Ep)] is larger than NJL case and causing an enhancement in

the spectral function . All these features also persist at non-zero chemical potential and

external momentum as can also be seen from figure 7.

At this point it is important to note that for T > 250MeV the mass in NJL model

almost approaches current quark mass (see figure 3(a)) and can be considered as a free

case since there is no vector interaction present (GV = 0). Nevertheless, the PNJL case

is different because of the presence of the nonperturbative confinement effect through the

Polyakov Loop fields. The PNJL model can suitably describe a semi-QGP [70, 71, 103]

scenario having nonperturbative effect due to the suppression of color degrees of freedom

compared to NJL vis-a-vis free case above the deconfinement temperature.

The above features of the spectral function in a semi-QGP with no vector interaction

will be reflected in the dilepton rate which is related to the spectral function, as given

in (2.7). In figure 8, the dilepton rate is displayed as a function of scaled invariant mass

M with T . As already discussed, at this temperatures the quark mass in NJL approaches

current quark mass faster than PNJL, thus the dilepton rates for Born and NJL cases

become almost the same. However, the dilepton rate in PNJL model is enhanced than those

of Born or NJL case. This in turn suggests that the nonperturbative dilepton production

rate is higher in a semi-QGP than the Born rate in a weakly coupled QGP. The dilepton

rate is also compared with that from LQCD result [35] within a quenched approximation.
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Figure 8. Comparison of dilepton rates as a function of M/T for T = 240MeV with external

momentum q = 0, quark chemical potential µ = 0 and GV /GS = 0. The LQCD rate is from ref. [35].

It is found to agree well for M/T ≥ 2, below which it differs from LQCD rate. We try to

understand this as follows: the spectral function in LQCD is extracted using MEM from

Euclidean vector correlation function by inverting (2.6), which requires an ansatz for the

spectral function. Using a free field spectral function as an ansatz, the spectral function in

a quenched approximation of QCD was obtained earlier [43] by inverting (2.6), which was

then approaching zero in the limit M/T → 0. So was the first lattice dilepton rate [43] at

low M/T whereas it was oscillating around the Born rate for M/T > 3. Now, in a very

recent LQCD calculation [35] with larger size, while extracting the spectral function using

MEM from Euclidean vector correlation function, an ansatz for the spectral function, a

Briet-Wigner (BW) for low M/T plus a free field one for M/T ≥ 2, has been used. The

ansatz of BW at low M/T pushes up the spectral function and so is the recent dilepton

rate in LQCD below M/T ≤ 2. However, no such ansatz is required in thermal QCD and

we can directly calculate the spectral function without any uncertainty by virtue of the

analytic continuation.

In figure 9 the dilepton rate is also displayed at T = 300MeV, non-zero chemical

potential (µ = 100MeV) and external momentum (q = 0 and 200MeV). We note that

this information could also be indicative for future LQCD computation of dilepton rate at

non-zero µ and q. The similar feature of semi-QGP as found in figure 8 is also seen here

but with a quantitative difference especially due to higher T , which could be understood

from figure 3(a).

5.2.2 With vector interaction (GV 6= 0)

In figure 10 the spectral function for GV /GS = 0.5 with q = 200MeV and µ = 100MeV

in NJL (left panel) and PNJL (right panel) model is displayed. At T = 100 < Tc ∼
160MeV [101, 104–106] the spectral function above the respective threshold, M > 2Mf ,

starts with a large value because the denominator in (4.18) is very small compared to those
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Figure 9. Different dilepton rates as a function of M/T at T = 300 MeV, µ = 100MeV and

GV /GS = 0 for (a) q = 0 (b) q = 200MeV.
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Figure 10. Scaled spectral function as a function of M/T in (a) NJL and (b) PNJL model for a

set of T with µ = 100MeV, q = 200MeV and GV /GS = 0.5. Note the difference in y-scale.

in (4.14) and (4.19). This is due to the two reasons: (i) the first term in the denominator

involving real parts of Π has zero below the threshold that corresponds to a sharp δ-like peak

as discussed in (5.3), thus it also becomes a very small number just above the threshold and

(ii) the second term involving imaginary parts start building up, which is also very small.

However, the increase in T causes the spectral function to decrease due to mutual effects

of denominator (involving both real and imaginary parts of Π) and numerator (involving

only imaginary parts of Π). On the other hand, with the increase in T , the threshold in

NJL case reduces quickly as the quark mass decreases faster whereas it reduces slowly for

PNJL case because the Polyakov Loop fields experience a slow variation of the quark mass.

So, the vector meson in NJL model acquires a width earlier than the PNJL model due to

suppression of color degrees of freedom in presence of Polyakov Loop fields. As seen, for

NJL model at T = Tc ∼ 160MeV the sharp peak like structure gets a substantial width
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Figure 11. Scaled spectral function as a function of M/T for (a) NJL and (b) PNJL model with

T = 200MeV, µ = 100MeV, q = 200MeV and a set of values of GV /GS = 0, 0.2, 0.4, 0.5 and 0.6.
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Figure 12. Scaled spectral function as a function ofM/T for (a) NJL and (b) PNJL model with T =

300MeV, µ = 100MeV, q = 200MeV and a set of values of GV /GS = 0, 0.2, 0.4, 0.5, 0.6 and 0.7.

than PNJL model. This suggests that the vector meson retains its bound properties at and

above Tc in PNJL model in presence of GV along with the nonperturbative effects through

Polyakov Loop fields.

In figures 11 and 12 we present the dependence of the spectral function on the vector

interaction in QGP for a set of values of the coupling GV in NJL (left panel) and PNJL

(right panel) model, respectively, for T = 200 and T = 300MeV. In both cases the spectral

strength increases with that of GV . Nevertheless, the strength of the spectral function in

PNJL case at a given T and GV is always stronger than that of NJL model. This suggests

that the presence of the vector interaction further suppresses the color degrees of freedom

in addition to the Polyakov Loop fields. The dilepton rates corresponding to T = 300MeV

are also displayed in figure 13, which show an enhancement at low M/T compared to
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Figure 13. Dilepton rates as a function of M/T (a) NJL and (b) PNJL model for a set of values

of GV /GS with T = 300MeV with external momentum q = 200MeV, quark chemical potential

µ = 100 MeV.
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Figure 14. Comparison of various scaled Euclidean correlation function with respect to that of

free field theory, GV (τT )/Gfree
V (τT ), as a function of the scaled Euclidean time τT for T = 240MeV

with external momentum q = 0, quark chemical potential µ = 0 and GV /GS = 0. The continuum

extrapolated LQCD result is from ref. [35].

GV = 0 case. The enhancement in PNJL case indicates that more lepton pairs will be

produced at low mass (M/T < 4) in semi-QGP with vector interaction, which would be

appropriate for the hot and dense matter likely to be produced at FAIR energies.

5.3 Vector correlation function

The vector correlation function can be obtained using (2.6) in the scaled Euclidean time

τT ∈ [0, 1]. We note that the correlation function in the τT range is symmetrical around

τT = 1/2 due to the periodicity condition in Euclidean time guaranteed by the kernel

cosh[ω(2τT − 1)/2T ]/ sinh(ω/2T ) in (2.6).

In figure 14 a comparison of the ratio of the vector correlation function to that of free

one is displayed at T = 240MeV, GV /GS = 0, µ = 0 and q = 0 for NJL, PNJL and the
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Figure 15. Ratio of Euclidean correlation function in PNJL model to that of NJL model as a

function of τT at T = 300MeV, µ = 100MeV and q = 200MeV with a set of values of GV /GS .

continuum extrapolated LQCD data [35] in quenched approximation. It is plotted in the

τT range [0, 1/2] because LQCD data are available for the same range. As seen the NJL

case becomes equal to that of free one as there is no effects from background gauge fields.

On the other hand the PNJL result at τT = 0 and 1 becomes similar to those of free

case because σPNJL
V (ω)/σfreeV (ω) = 1 as ω → ∞. Around τT = 1/2 it deviates maximum

from the free case due to the difference in spectral function at small ω and thus a nontrivial

correlation exists among color charges due to the presence of the nonperturbative Polyakov

Loop fields. This features are consistent with those in the spectral function in figure 6 and

the dilepton rate in figure 8. In contrary, the correlation function around τT = 1/2 agrees

better with that of LQCD in quenched approximation [35].

In figure 15, we display the effect of the vector interaction GV in addition to the

presence of the Polyakov Loop fields in QGP through the ratio of the correlation function

in PNJL model to that of NJL model. Here we have displayed the result in the full

range of the scaled Euclidean time τT ∈ [0, 1]. As discussed the ratio is symmetric around

τT = 1/2 and always stay above unity. The ratio increases with the increase of the strength

of the vector interaction. This is due to the fact that PNJL correlation function is always

larger than that of the NJL case since σPNJL
V (ω, ~q)/σNJL

V (ω, ~q) > 1, and it is even stronger in

particular at small ω (see figure 12). This indicates that the color charges maintain a strong

correlation among them due to the presence of both Polyakov Loop fields and the vector

interaction. Thus the vector meson retains its bound properties in the deconfined phase.

5.4 Quark number susceptibility and temporal correlation function

Now, we can calculate quark number susceptibility (QNS) associated with the temporal

part of the vector spectral function through the conserved density fluctuation as given

in (4.22). The resummed susceptibility for a set of values of GV at finite quark chemical

potential (µ = 100MeV) is shown in figure 16. For positive vector coupling GV the denom-

inator of (4.22) is always greater than unity and as a result the resummed susceptibility

gets suppressed as one increases GV . Since positive GV implies a repulsive interaction,
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Figure 16. Resummed quark number susceptibility in (a) NJL model and (b) PNJL model at

non-zero chemical potential for two flavor (Nf = 2).

the compressibility of the system decreases with increase of GV , hence the susceptibility

as seen from figure 16 decreases. We note that the QNS at finite µ shows an important

feature around the phase transition temperature than that at µ = 0 [84]. This is due to

the fact that the mean fields (X = σ, Φ and Φ̄) which implicitly depend on µ contributes

strongly as the change of these fields are most significant around the transition region. This

feature could be important in the perspective of FAIR scenario where a hot but very dense

matter is expected to be created. Using (2.10) one can compute the temporal Euclidean

correlation function associated with the QNS as GE
00(τT )/T = −χR

q (T ), which does not

depend on τ but on T . This study could also provide useful information to future LQCD

calculation at finite µ.

6 Conclusion

In the present work, the behavior of the vector meson correlation function and its spectral

representation, and various physical quantities associated with the spectral representation,

in a hot and dense environment, have been studied within the effective model framework,

viz. NJL and PNJL model. PNJL model contains additional nonperturbative information

through Polyakov Loop fields than NJL model. In addition to this nonperturbative effect of

Polyakov Loop, the repulsive isoscalar-vector interaction is also considered. The influence of

such interaction on the correlator and its spectral representation in a hot and dense medium

has been obtained using ring resummation known as Random Phase Approximation. The

incorporation of vector interaction is important, in particular, for various spectral proper-

ties of the system at non-zero chemical potential. However, the value of the vector coupling

strength is difficult to fix from the mass scale which is higher than the maximum energy

scale Λ of the effective theory. So, we have made different choices of this vector coupling

strength to understand qualitatively its effect on the various quantities we have computed.

In absence of the isoscalar-vector interaction, the static spectral function and the corre-

lation function in NJL model become quantitatively equivalent to those of free field theory.

In case of PNJL these quantities are different from both free and NJL case because of the
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presence of the nonperturbative Polyakov Loop fields that suppress the color degrees of free-

dom in the deconfined phase just above Tc. This suggests that some nontrivial correlation

exist among the color charges in the deconfined phase. As an important consequence, the

nonperturbative dilepton production rate is enhanced in the deconfined phase compared to

the leading order perturbative rate. We note that the Euclidean correlation function and

the nonperturbative rate with zero chemical potential agree well with the available LQCD

data in quenched approximation. We also discussed these quantities in presence of finite

chemical potential and external momentum which could provide useful information if, in

future, LQCD computes them at finite chemical potential and external momentum.

In presence of the isoscalar-vector interaction, appropriate for hot but very dense

medium likely to be created at FAIR GSI, it is found that the color degrees of freedoms

are, further, suppressed up to a moderate value of the temperature above the critical

temperature implying a stronger correlation among the color charges in the deconfined

phase. The correlation function, spectral function and its spectral property, e.g., the low

mass dilepton rate are strongly affected in PNJL case than NJL case. We also note that the

response to the conserved number density fluctuation at finite chemical potential exhibits

an interesting characteristic around the phase transition temperature than that at vanishing

chemical potential. This is because the mean fields (Polyakov Loop fields and condensates

etc.) depend implicitly on chemical potential and so their variations are most significant

around the transition region, in particular for PNJL model. Finally, some of our results

presented in this work can be tested when LQCD computes them, in future, with the

inclusion of the dynamical fermions.
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