17 research outputs found

    The Post-Wildfire Impact of Burn Severity and Age on Black Carbon Snow Deposition and Implications for Snow Water Resources, Cascade Range, Washington

    Get PDF
    Wildfires in the snow zone affect ablation by removing forest canopy, which enhances surface solar irradiance, and depositing light absorbing particles [LAPs, such as black carbon (BC)] on the snowpack, reducing snow albedo. How variations in BC deposition affects post-wildfire snowmelt timing is poorly known and highly relevant to water resources. We present a field-based analysis of BC variability across five sites of varying burn age and burn severity in the Cascade Range, Washington State, United States. Single particle soot photometer (SP2) analyses of BC snow concentrations were used to assess the impact of BC on snow albedo, and radiative transfer modeling was used to estimate the radiative effect of BC on snowmelt. Results were compared to Snowpack Telemetry (SNOTEL) data from one site that burned in 2012 and another in a proximal unburned forest. We show that post-wildfire forests provide a significant source of BC to the snowpack, and this effect increases by an order of magnitude in regions of high versus low burn severity, and decreased by two orders of magnitude over a decade. There is a shift in the timing of snowmelt, with snow disappearance occurring on average 19 ± 9 days earlier post-wildfire (2013–19) relative to pre-wildfire (1983–2012). This study improves understanding of the connection between wildfire activity and snowmelt, which is of high relevance as climate change models project further decreases in snowpack and increases in wildfire activity in the Washington Cascades

    Pervasive alterations to snow-dominated ecosystem functions under climate change

    No full text
    © 2022 National Academy of Sciences. All rights reserved.Climate change projections consistently demonstrate that warming temperatures and dwindling seasonal snowpack will elicit cascading effects on ecosystem function and water resource availability. Despite this consensus, little is known about potential changes in the variability of ecohydrological conditions, which is also required to inform climate change adaptation and mitigation strategies. Considering potential changes in ecohydrological variability is critical to evaluating the emergence of trends, assessing the likelihood of extreme events such as floods and droughts, and identifying when tipping points may be reached that fundamentally alter ecohydrological function. Using a single-model Large Ensemble with sophisticated terrestrial ecosystem representation, we characterize projected changes in the mean state and variability of ecohydrological processes in historically snow-dominated regions of the Northern Hemisphere. Widespread snowpack reductions, earlier snowmelt timing, longer growing seasons, drier soils, and increased fire risk are projected for this century under a high-emissions scenario. In addition to these changes in the mean state, increased variability in winter snowmelt will increase growing-season water deficits and increase the stochasticity of runoff. Thus, with warming, declining snowpack loses its dependable buffering capacity so that runoff quantity and timing more closely reflect the episodic characteristics of precipitation. This results in a declining predictability of annual runoff from maximum snow water equivalent, which has critical implications for ecosystem stress and water resource management. Our results suggest that there is a strong likelihood of pervasive alterations to ecohydrological function that may be expected with climate change.11Nsciescopu

    Increasing Alaskan river discharge during the cold season is driven by recent warming

    No full text
    Arctic hydrology is experiencing rapid changes including earlier snow melt, permafrost degradation, increasing active layer depth, and reduced river ice, all of which are expected to lead to changes in stream flow regimes. Recently, long-term (>60 years) climate reanalysis and river discharge observation data have become available. We utilized these data to assess long-term changes in discharge and their hydroclimatic drivers. River discharge during the cold season (October–April) increased by 10% per decade. The most widespread discharge increase occurred in April (15% per decade), the month of ice break-up for the majority of basins. In October, when river ice formation generally begins, average monthly discharge increased by 7% per decade. Long-term air temperature increases in October and April increased the number of days above freezing (+1.1 d per decade) resulting in increased snow ablation (20% per decade) and decreased snow water equivalent (−12% per decade). Compared to the historical period (1960–1989), mean April and October air temperature in the recent period (1990–2019) have greater correlation with monthly discharge from 0.33 to 0.68 and 0.0–0.48, respectively. This indicates that the recent increases in air temperature are directly related to these discharge changes. Ubiquitous increases in cold and shoulder-season discharge demonstrate the scale at which hydrologic and biogeochemical fluxes are being altered in the Arctic

    Interannual and seasonal variability of snow depth scaling behavior in a subalpine catchment

    No full text
    Understanding and characterizing the spatial distribution of snow are critical to represent the energy balance and runoff production in mountain environments. In this study, we investigate the interannual and seasonal variability in snow depth scaling behavior at the Izas experimental catchment of the Spanish Pyrenees (2,000 to 2,300 m above sea level). We conduct variogram analyses of 24 snow depth maps derived from terrestrial light detection and ranging scans, acquired during six consecutive snow seasons (2011-2017) that span a range of hydroclimatic conditions. We complement our analyses with bare ground topography data and wind speed and direction measurements. Our results show temporal consistency in the spatial variability of snow depth, with short-range fractal behavior and scale break lengths that are similar to the optimal search distance (25 m) previously reported for the topographic position index, a terrain-based predictor of snow depth. Beyond the 25-m scale break, there is little to no fractal structure. We report a long-range scale break of the order of 185-300 m for most dates-aligned with the dominant wind direction-and patterns between anisotropies in scale break lengths of shallow snow cover and directional terrain scaling behavior. The temporal consistency of snow depth scaling patterns suggests that, in addition to guiding the spatial configuration of physically based models, fractal analysis could be used to inform the design of independent variables for statistical models used to predict snow depth and its variability.Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) CONICYT FONDECYT 3170079 CONICYT/PIA Project AFB18000
    corecore